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Software reusability for spacecraft platform is one of the most important requirements because of the huge re-verification cost. 
Re-using pre-proven software can reduce a long and cost-taking development cycle and improve the reliability as well. Full 
virtualization technique is fit to boost software reusability. Dynamic binary translation is a core technology to achieve full 
virtualization. In this paper, we developed a prototype of dynamic binary translator engine for spacecraft computer. The binary 
translator analyzes and translates execution files for the ERC32 processor. The ERC32 is the processor of the guest virtual 
machine. During translation, we try to avoid traps on the target computer since they are the main source of the virtualization 
overhead. The translator prototype executes generated binaries on the LEON4 processor which is the Next Generation Multicore 
Processor (NGMP) in space sector. In evaluation, our binary translator is about 1.3 times faster than the translator which uses 
trap-and-emulate method. 

 
 

1. Introduction     

  Recently virtualization is proposed as the candidate 
technology for safety-critical space application. As functional 
requirements are increased, functional units which comprise the 
subsystems are distributed physically and it makes the platform 
big and complex[1]. Aeronautic field suffered similar problems 
and introduced Integrated Modular Avionics (IMA)[2] Since 
European Space Agency (ESA) moved this concept to space, 
virtualization has become one solution for IMA. XtratuM[3] and 
PikeOS[4] which can support ARINC 653 partitioning for IMA 
has been reported. 

Spacecraft computer has its own characteristics. When the 
spacecraft is visible from the ground, the ground station can 
communicate the spacecraft within limited time. Thus, the 
spacecraft should be operated autonomously in orbit. These 
features require that the flight software must be completely 
verified in order to guarantee mission success before it is 
launched. Whenever a new spacecraft is developed, the inherited 
software, which has been proven for previous missions, should 
be redeveloped or modified. Hence, software reusability without 
modification is one of the most important considerations in 
space sector because of the huge re-verification cost. In other 
words, complete software reusability can reduce the 
development cost. Full virtualization technique provides the 
excellent compatibility[5], but most of spacecraft virtualization 
use para-virtualization technique due to the poor performance of 
full virtualization even though it has poor compatibility. 

According to Popek and Goldberg[6], traditionally critical 
instructions can be performed by trap-and-emulate method for 
full virtualization. But VMware claimed that trap is very 
expensive operation. They have tried to handle sensitive 
instructions using binary translation and improved the 
performance by reducing number of traps[7]. Moreover, traps 
may make real-time tasks non-deterministic. Recently, hardware 
assisted virtualization technique has been introduced in desktop, 
server and even mobile embedded system such as Intel VT-x[10] 
and Cortex A15[11]. However, in space sector, there is no 
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hardware extension for virtualization. In [8][9], they showed 
VMEXIT has large overhead and [8] used binary analysis and 
translation technique for reducing VMEXITs.  

In this paper, we describe implementation of DBT for 
proof-of-concept with the full virtualizing spacecraft hypervisor 
prototype. In addition, we discuss why we adopted full 
virtualization technique for spacecraft computer and how we 
will overcome the overhead by implementing the binary 
translator in the future. 

The DBT analyzes and translates execution files for the 
ERC32 processor. The ERC32 is the processor of the guest 
virtual machine. During translation we try to avoid traps on the 
target computer since they are the main source of the 
virtualization overhead. The prototype executes translated 
binaries on the LEON4 processor[13] which is the ESA Next 
Generation Multicore Processor (NGMP). In evaluation, our 
binary translator executed faster than the traditional 
trap-and-emulate one. Configuration of Page Layout 

2. Related Works 

Virtualization technologies are widely used for desktop and 
server markets. VMware successfully virtualized x86 processors 
with DBT earlier. However, DBT has overhead during 
translation. Xen[14] and XtratuM have addressed the 
performance using paravirtualization instead of full 
virtualization with DBT. But they require modifying and 
recompiling guest operating system and applications. KVM[15], 
Xen, VMware, and VirtualBox[16] use the hardware assist for 
virtualization. But there is no hardware extension for 
virtualization in space sector. 

Hypervisors in aerospace support IMA such as ARINC 
653[17]. XtratuM and PikeOS are known results. They are 
bare-metal hypervisor using paravirtualization. For space use, 
they support RTEMS[18] and processors such as LEON2 and 
LEON3, which are widely used on spacecraft computers. 
However, they use paravirtualization to achieve low 
virtualization overhead instead of reusability. Flight software 
(FSW) from previous missions has to be modified and 
recompiled for their implementation. In other words, if a new 
spacecraft has IMA and full virtualization architecture, the flight 
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software can be achieved from the pre-proven FSWs on 
different partition. 

DBT translates binaries from one ISA to another on-the-fly. 
HDTrans[19] is lightweight instrumentation system and it can 
translate IA-32 to IA-32 based on low translation table. This 
technique is lightweight. However it has limited optimization 
chances, and cannot support multiple ISA. DynamoRIO[20] and 
PIN[21] translates IA-32 to IA-32. They translate binaries to IRs 
in first parse, and then generate binaries based on passed IRs. 
They can use various optimization methods for a compiler. But 
it could be slower because of going through parsing process. 

To overcome this problem, we implemented the efficient DBT. 
We also designed a space hypervisor prototype using the DBT 
for the LEON4. 

3. Hypervisor for Spacecraft 

We proposed the design of spacecraft hypervisor prototype in 
[22]. Figure 1 shows the overall structure. We report design and 
prototype implementation of Type II hosted full virtualizing 
hypervisor for spacecraft computer. The hypervisor includes 
Linux kernel for various stable components. Therefore, it can be 
seen as a special operating system. The virtual machine monitor 
(VMM) is located at an operating system. A virtual machine 
(VM) is a user process. Each VM consists of a Virtual CPU 
(VCPU), virtual devices, an execution module, and the DBT. 

DBT and VCPU are key features about full virtualization and 
this is different characteristic with paravirtualization. It is the 
process of translating machine code at the run time. We define a 
VCPU for ERC32 and classify its instructions. The VCPU is a 
data structure including shadow registers and windows. 
Execution Manager executes guest VM using the DBT and 
VCPU. 

 

 
Figure 1  S-Hypervisor prototype [24] 

 

4. Design of Dynamic Binary Translator 
DBT is required to virtualize sensitive instructions in our 

hypervisor because classical trap-and-emulate method cannot 
emulate sensitive instructions which are not privileged. 
However, it has the disadvantage about performance due to 
extra step for translation. Nevertheless, some research groups 

like VMware achieve full virtualization with DBT for 
acceptable performance. They have tried to avoid traps on the 
host machine as many as possible by binary analysis, 
instrumentation, and translation[7].  

DBT is still a useful tool even though the sensitive 
instructions have been emulated via classical trap-and-emulate 
approach. If hardware assist is available, it achieves better 
execution time. In [8], they claim that DBT is a software 
technique to improve the performance. VMEXITs lead to mode 
change between gust and hypervisor mode. It is one of the main 
overhead in virtualization. To avoid a number of VMEXITs by 
clustering instructions, they also use DBT. 

In this paper, we argue that DBT is very attractive and 
essential technique to full virtualization with lower overhead. In 
addition, there is no processor with the hardware assist for 
virtualization in space sector yet. Therefore DBT is one of the 
main cores to achieve full virtualizing spacecraft computer and 
improve performance as well. 

4.1 The overall structure 
DBT in the prototype translates SPARC v7 instructions for 

ERC32 to SPARC v8 instructions for LEON4 on-the-fly. We 
translate the guest image into dynamic basic blocks. The control 
flow of basic blocks is determined at runtime. They are started 
right after control transfer instructions such as branch, and then 
finished at next control transfer instructions. The DBT supports 
code cache to reduce translation overhead. If the block has been 
executed before, DBT can skip translation step by jumping to 
code cache directly. Intermediate Representation (IR) step is 
unnecessary in our case. It is because our guest and the host 
processor have almost the same instruction set architecture 
(ISA). 

4.2 Classification of instructions 
As shown in Table 1, we classify SPARC v 7 instructions into 

three categories: privileged, sensitive, and normal instructions. 
Privileged and sensitive are critical instructions accessing 
system resources such as processor status register or memory. In 
this classification, privileged instructions cause traps and 
sensitive instructions do not generate traps when the host 
processor is in user mode. Load and store instructions are 
typical sensitive instructions. We categorize control transfer 
instructions to sensitive instructions. Those instructions identify 
basic block units. Normal instructions do not belong to 
privileged and sensitive and it includes Arithmetic, logical, and 
shift operations. 

4.3 Translation rules 
Normal instructions. These instructions are the ones that can 

be executed without extra supervision by the virtualization layer. 
They are executed simply by copying the guest instruction. 

Privileged instructions. DBT translates privileged 
instructions to other instructions according to following 
behaviors. We check whether guest code is in privileged mode 
or not via the processor state register (PSR) of guest’s VCPU. 
When a guest is running in privileged mode, the translated 
privileged instructions are executed. 
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Unconditional branch instructions. Handling unconditional 
branches such as CALL, DBT calculates the guest’s next PC, 
and then inserts calculated PC to the end of a translated block. 
Finally unconditional branches are removed. 

Conditional branch instructions. Dealing with conditional 
branches, DBT inserts two guest’s next PCs and adjusts offset of 
conditional branches. Register window moves instructions. The 
SAVE and RESTROE instruction move the register window of 
SPARC architecture. DBT needs to translate them to several 
instructions which mean that current window pointer (CWP) of 
guest’s PSR is changed for moving the guest’s register window. 

Load and store instructions. DBT inserts instructions to 
calculate the correct address of operands. 
 

Table 1  Classification of SPARC v7 ISA 

 

5. Experiment 

The experiments were performed on dual-core LEON4 based 
GR-LEON4-ITX board from Aeroflex Gaisler[23]. The 
prototype is designed as loadable kernel module on Linux 
2.6.21.1. We programmed a simple benchmark that has a 
subroutine to swap between two values. It has 22 sensitive 
instructions and 18 instructions are LD/ST among the sensitive 
instructions. While the simple benchmark program is executed, 
we measure translation and execution time respectively. For the 
reappearance of the trap-and-emulation, we modified 
do_priv_instruction() in Linux kernel. We confirmed that two 
values in memory are swapped using GDB. 
 

Table 2  Total average time (in ms) with a loop for repeating 
the guest program once, 100 times, 1000 times.1 

The number of repeated loop 1 100 1000 

Trap-and-Emulate 7.8 443 5137.7 

DBT 5.6 26.6 216.7 

 

Table 3  Translation and execution time (in ms) when the guest 
program is executed once 

 Translation Execution Total 

Trap-and-Emulate 1.7 6.1 7.8 

DBT 4.9 0.7 5.6 

 
Table 2 shows results about the total average time for 

repeating ten executions independently. The measurement was 
performed using the benchmark program with a loop for 
repeating it once, 100 times and 1000 times. We distinguish 
between translation and execution time in our result. It is 
presented in Table 3. These tables show that trap-and-emulate 
version is slower than the DBT to emulate critical instructions at 
user level. As shown in Table 3, trap-and-emulate spent 6.1ms 
for the execution. It is because trap handling requires executing 
extra instruction. On the other hand the DBT took only 0.7ms 
for the execution even though it spent 4.9ms to translate the 
guest program. As we repeated the guest program, the total time 
could be shorter because of the code cache. We found the result 
that is wide variation of execution time due to trap. In 
experiment of repeated loop, best execution time is two times 
faster than worst case. In real-time system for spacecraft 
running on RISC machine, load and store instructions are used 
very frequently. They are usually sensitive instructions in RISC 
machines. We need to think about solutions for the optimization 
because our result shows the frequent traps or VMEXITs may 
cause of lager overhead. 

6. Conclusion 

In this paper, we developed a dynamic binary translator 
engine for spacecraft computer. Dynamic binary translator is the 
core the core technology for full virtualization and we need to 
reduce runtime overhead for space use. As our first step, we 
developed the dynamic binary translator, which reduce number 
of traps in translation step. Even though we tested with a small 
size ERC32 program, we could see potential for achieving full 
virtualization in space sector. 

In the future work, we expect this attempt to become the 
important first step for full virtualization in space sector. 
Through experiment, we found that load and store instructions 
are used very frequently in spacecraft system running on RISC 
machine. Therefore, we will be able to find good approaches 
about load and store instructions to reduce the much overhead 
for full virtualizing spacecraft computer. 
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