

Dynamic Binary Translator for Full Virtualizing Spacecraft
Computer

Hyeona Jeong†1 Hyunwoo Joe†1 Cheolsoon Kwon†1 Hyungshin Kim†1,*

Software reusability for spacecraft platform is one of the most important requirements because of the huge re-verification cost.
Re-using pre-proven software can reduce a long and cost-taking development cycle and improve the reliability as well. Full
virtualization technique is fit to boost software reusability. Dynamic binary translation is a core technology to achieve full
virtualization. In this paper, we developed a prototype of dynamic binary translator engine for spacecraft computer. The binary
translator analyzes and translates execution files for the ERC32 processor. The ERC32 is the processor of the guest virtual
machine. During translation, we try to avoid traps on the target computer since they are the main source of the virtualization
overhead. The translator prototype executes generated binaries on the LEON4 processor which is the Next Generation Multicore
Processor (NGMP) in space sector. In evaluation, our binary translator is about 1.3 times faster than the translator which uses
trap-and-emulate method.

1. Introduction

 Recently virtualization is proposed as the candidate
technology for safety-critical space application. As functional
requirements are increased, functional units which comprise the
subsystems are distributed physically and it makes the platform
big and complex[1]. Aeronautic field suffered similar problems
and introduced Integrated Modular Avionics (IMA)[2] Since
European Space Agency (ESA) moved this concept to space,
virtualization has become one solution for IMA. XtratuM[3] and
PikeOS[4] which can support ARINC 653 partitioning for IMA
has been reported.

Spacecraft computer has its own characteristics. When the
spacecraft is visible from the ground, the ground station can
communicate the spacecraft within limited time. Thus, the
spacecraft should be operated autonomously in orbit. These
features require that the flight software must be completely
verified in order to guarantee mission success before it is
launched. Whenever a new spacecraft is developed, the inherited
software, which has been proven for previous missions, should
be redeveloped or modified. Hence, software reusability without
modification is one of the most important considerations in
space sector because of the huge re-verification cost. In other
words, complete software reusability can reduce the
development cost. Full virtualization technique provides the
excellent compatibility[5], but most of spacecraft virtualization
use para-virtualization technique due to the poor performance of
full virtualization even though it has poor compatibility.

According to Popek and Goldberg[6], traditionally critical
instructions can be performed by trap-and-emulate method for
full virtualization. But VMware claimed that trap is very
expensive operation. They have tried to handle sensitive
instructions using binary translation and improved the
performance by reducing number of traps[7]. Moreover, traps
may make real-time tasks non-deterministic. Recently, hardware
assisted virtualization technique has been introduced in desktop,
server and even mobile embedded system such as Intel VT-x[10]
and Cortex A15[11]. However, in space sector, there is no

 †1 Dept. of Computer Science and Engineering at Chungnam National University.
{ jha113, jhwzero, cskwon }@cnu.ac.kr
 * corresponding author : hyungshin@cnu.ac.kr

hardware extension for virtualization. In [8][9], they showed
VMEXIT has large overhead and [8] used binary analysis and
translation technique for reducing VMEXITs.

In this paper, we describe implementation of DBT for
proof-of-concept with the full virtualizing spacecraft hypervisor
prototype. In addition, we discuss why we adopted full
virtualization technique for spacecraft computer and how we
will overcome the overhead by implementing the binary
translator in the future.

The DBT analyzes and translates execution files for the
ERC32 processor. The ERC32 is the processor of the guest
virtual machine. During translation we try to avoid traps on the
target computer since they are the main source of the
virtualization overhead. The prototype executes translated
binaries on the LEON4 processor[13] which is the ESA Next
Generation Multicore Processor (NGMP). In evaluation, our
binary translator executed faster than the traditional
trap-and-emulate one. Configuration of Page Layout

2. Related Works

Virtualization technologies are widely used for desktop and
server markets. VMware successfully virtualized x86 processors
with DBT earlier. However, DBT has overhead during
translation. Xen[14] and XtratuM have addressed the
performance using paravirtualization instead of full
virtualization with DBT. But they require modifying and
recompiling guest operating system and applications. KVM[15],
Xen, VMware, and VirtualBox[16] use the hardware assist for
virtualization. But there is no hardware extension for
virtualization in space sector.

Hypervisors in aerospace support IMA such as ARINC
653[17]. XtratuM and PikeOS are known results. They are
bare-metal hypervisor using paravirtualization. For space use,
they support RTEMS[18] and processors such as LEON2 and
LEON3, which are widely used on spacecraft computers.
However, they use paravirtualization to achieve low
virtualization overhead instead of reusability. Flight software
(FSW) from previous missions has to be modified and
recompiled for their implementation. In other words, if a new
spacecraft has IMA and full virtualization architecture, the flight

 1

software can be achieved from the pre-proven FSWs on
different partition.

DBT translates binaries from one ISA to another on-the-fly.
HDTrans[19] is lightweight instrumentation system and it can
translate IA-32 to IA-32 based on low translation table. This
technique is lightweight. However it has limited optimization
chances, and cannot support multiple ISA. DynamoRIO[20] and
PIN[21] translates IA-32 to IA-32. They translate binaries to IRs
in first parse, and then generate binaries based on passed IRs.
They can use various optimization methods for a compiler. But
it could be slower because of going through parsing process.

To overcome this problem, we implemented the efficient DBT.
We also designed a space hypervisor prototype using the DBT
for the LEON4.

3. Hypervisor for Spacecraft

We proposed the design of spacecraft hypervisor prototype in
[22]. Figure 1 shows the overall structure. We report design and
prototype implementation of Type II hosted full virtualizing
hypervisor for spacecraft computer. The hypervisor includes
Linux kernel for various stable components. Therefore, it can be
seen as a special operating system. The virtual machine monitor
(VMM) is located at an operating system. A virtual machine
(VM) is a user process. Each VM consists of a Virtual CPU
(VCPU), virtual devices, an execution module, and the DBT.

DBT and VCPU are key features about full virtualization and
this is different characteristic with paravirtualization. It is the
process of translating machine code at the run time. We define a
VCPU for ERC32 and classify its instructions. The VCPU is a
data structure including shadow registers and windows.
Execution Manager executes guest VM using the DBT and
VCPU.

Figure 1 S-Hypervisor prototype [24]

4. Design of Dynamic Binary Translator
DBT is required to virtualize sensitive instructions in our

hypervisor because classical trap-and-emulate method cannot
emulate sensitive instructions which are not privileged.
However, it has the disadvantage about performance due to
extra step for translation. Nevertheless, some research groups

like VMware achieve full virtualization with DBT for
acceptable performance. They have tried to avoid traps on the
host machine as many as possible by binary analysis,
instrumentation, and translation[7].

DBT is still a useful tool even though the sensitive
instructions have been emulated via classical trap-and-emulate
approach. If hardware assist is available, it achieves better
execution time. In [8], they claim that DBT is a software
technique to improve the performance. VMEXITs lead to mode
change between gust and hypervisor mode. It is one of the main
overhead in virtualization. To avoid a number of VMEXITs by
clustering instructions, they also use DBT.

In this paper, we argue that DBT is very attractive and
essential technique to full virtualization with lower overhead. In
addition, there is no processor with the hardware assist for
virtualization in space sector yet. Therefore DBT is one of the
main cores to achieve full virtualizing spacecraft computer and
improve performance as well.

4.1 The overall structure
DBT in the prototype translates SPARC v7 instructions for

ERC32 to SPARC v8 instructions for LEON4 on-the-fly. We
translate the guest image into dynamic basic blocks. The control
flow of basic blocks is determined at runtime. They are started
right after control transfer instructions such as branch, and then
finished at next control transfer instructions. The DBT supports
code cache to reduce translation overhead. If the block has been
executed before, DBT can skip translation step by jumping to
code cache directly. Intermediate Representation (IR) step is
unnecessary in our case. It is because our guest and the host
processor have almost the same instruction set architecture
(ISA).

4.2 Classification of instructions
As shown in Table 1, we classify SPARC v 7 instructions into

three categories: privileged, sensitive, and normal instructions.
Privileged and sensitive are critical instructions accessing
system resources such as processor status register or memory. In
this classification, privileged instructions cause traps and
sensitive instructions do not generate traps when the host
processor is in user mode. Load and store instructions are
typical sensitive instructions. We categorize control transfer
instructions to sensitive instructions. Those instructions identify
basic block units. Normal instructions do not belong to
privileged and sensitive and it includes Arithmetic, logical, and
shift operations.

4.3 Translation rules
Normal instructions. These instructions are the ones that can

be executed without extra supervision by the virtualization layer.
They are executed simply by copying the guest instruction.

Privileged instructions. DBT translates privileged
instructions to other instructions according to following
behaviors. We check whether guest code is in privileged mode
or not via the processor state register (PSR) of guest’s VCPU.
When a guest is running in privileged mode, the translated
privileged instructions are executed.

 2

Unconditional branch instructions. Handling unconditional
branches such as CALL, DBT calculates the guest’s next PC,
and then inserts calculated PC to the end of a translated block.
Finally unconditional branches are removed.

Conditional branch instructions. Dealing with conditional
branches, DBT inserts two guest’s next PCs and adjusts offset of
conditional branches. Register window moves instructions. The
SAVE and RESTROE instruction move the register window of
SPARC architecture. DBT needs to translate them to several
instructions which mean that current window pointer (CWP) of
guest’s PSR is changed for moving the guest’s register window.

Load and store instructions. DBT inserts instructions to
calculate the correct address of operands.

Table 1 Classification of SPARC v7 ISA

5. Experiment

The experiments were performed on dual-core LEON4 based
GR-LEON4-ITX board from Aeroflex Gaisler[23]. The
prototype is designed as loadable kernel module on Linux
2.6.21.1. We programmed a simple benchmark that has a
subroutine to swap between two values. It has 22 sensitive
instructions and 18 instructions are LD/ST among the sensitive
instructions. While the simple benchmark program is executed,
we measure translation and execution time respectively. For the
reappearance of the trap-and-emulation, we modified
do_priv_instruction() in Linux kernel. We confirmed that two
values in memory are swapped using GDB.

Table 2 Total average time (in ms) with a loop for repeating
the guest program once, 100 times, 1000 times.1

The number of repeated loop 1 100 1000

Trap-and-Emulate 7.8 443 5137.7

DBT 5.6 26.6 216.7

Table 3 Translation and execution time (in ms) when the guest
program is executed once

 Translation Execution Total

Trap-and-Emulate 1.7 6.1 7.8

DBT 4.9 0.7 5.6

Table 2 shows results about the total average time for

repeating ten executions independently. The measurement was
performed using the benchmark program with a loop for
repeating it once, 100 times and 1000 times. We distinguish
between translation and execution time in our result. It is
presented in Table 3. These tables show that trap-and-emulate
version is slower than the DBT to emulate critical instructions at
user level. As shown in Table 3, trap-and-emulate spent 6.1ms
for the execution. It is because trap handling requires executing
extra instruction. On the other hand the DBT took only 0.7ms
for the execution even though it spent 4.9ms to translate the
guest program. As we repeated the guest program, the total time
could be shorter because of the code cache. We found the result
that is wide variation of execution time due to trap. In
experiment of repeated loop, best execution time is two times
faster than worst case. In real-time system for spacecraft
running on RISC machine, load and store instructions are used
very frequently. They are usually sensitive instructions in RISC
machines. We need to think about solutions for the optimization
because our result shows the frequent traps or VMEXITs may
cause of lager overhead.

6. Conclusion

In this paper, we developed a dynamic binary translator
engine for spacecraft computer. Dynamic binary translator is the
core the core technology for full virtualization and we need to
reduce runtime overhead for space use. As our first step, we
developed the dynamic binary translator, which reduce number
of traps in translation step. Even though we tested with a small
size ERC32 program, we could see potential for achieving full
virtualization in space sector.

In the future work, we expect this attempt to become the
important first step for full virtualization in space sector.
Through experiment, we found that load and store instructions
are used very frequently in spacecraft system running on RISC
machine. Therefore, we will be able to find good approaches
about load and store instructions to reduce the much overhead
for full virtualizing spacecraft computer.

Reference
1) Martin, H., James, W., Knut, Eckstein., Maria, H., and Kjeld, H.

2012. ESA Roadmap for IMA Spin-in to Spacecraft Avionics. Data
System In Aerospace (May. 2012). DASIA 2012. Dubrovnik,
Croatia.

2) Aeronautical Radio Inc. 1991. Design Guidance for Integrated
Modular Avionics. ARINC Report 651.

3) A. Crespo, I. Ripoll, M. Masmano, P. Arberet, and J.J. Metge.
2010. XtratuM: an Open Source Hypervisor for TSP Embedded

Type # Instructions

Privileged 20

LDSBNA, LDSHA, LDUBA, LDUHA, LDA, LDDA,

STBA, STHA, STA, STDA, STDFQ, LDSTUBA,

SWAPA, RDPSR, RDWIM, RDTBR, WRPSR,

WPWIM, WRTBR, RETT

Sensitive

more

than

31

LDSB, LDSH, SDUH, LD, LDC, LDDC, LDCSR, STB,

STH, ST, STD, STC, STDC, STCSR, SDSTUB, SWAP,

LDD, LDF, LDDF, LDFSR, STF, STDF, STFSR, SAVE,

RESTORE, Bicc, FBicc, CALL, JMPL, Ticc, FPop

Normal 28

ADD, ADDX, SUB, SUBX, ANDX, AND, ANDN, OR,

ORN, XOR, XNOR, SLL, SRL, ADDcc, ADDXcc,

TADDcc, TADDccTV, MULScc, SUBcc, ANDcc,

ANDNcc, ORcc, ORNcc, XORcc, XNORcc, RDY,

WRY, FLUSH

 3

Systems in Aerospace. Data System In Aerospace (May. 2010).
DASIA 2010. Istanbul, Turkey.

4) SYSGO AG. PikeOS RTOS Technology. http://www.pikeos.com
5) VMware white paper. 2007. Understanding Full virtualization,

Paravirtualization, and Hardware Assist. WP-028-PRD-01-01
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf

6) Popek, G. J., and Goldberg, R. P. 1974. Formal Requirements for
Virtualizable Third Generation Architectures. Communications of
the ACM, Volume 17, 412-421.

7) Keith Adams and Ole Agesen. 2006. A Comparison of Software
and Hardware Techniques for x86 Virtualization. Proceedings of
the 12th international conference on Architectural support for
programming languages and operating systems (Oct. 2006).
ASPLOS-XII. San Joes, California.

8) Ole Agesen, Jim Mattson, Radu Rugina, and Jeffrey Sheldon. 2012.
Software techniques for avoiding hardware virtualization exits.
Proceedings of the 2012 USENIX conference on Annual Technical
Conference. USENIX ATC'12.

9) Abel Gordon , Nadav Amit , Nadav Har'El , Muli Ben-Yehuda ,
Alex Landau , Assaf Schuster , Dan Tsafrir. 2012. ELI: bare-metal
performance for I/O virtualization. Proceedings of the seventeenth
international conference on Architectural Support for
Programming Languages and Operating Systems (Mar. 2012).
ASPLOS '12. London, England, UK.

10) Intel VT. http://ark.intel.com/Products/VirtualizationTechnology
11) Cortext A15.

http://www.arm.com/products/processors/cortex-a/cortexa15.php
12) ERC32, http://www.atmel.com
13) LEON4, http://www.gailser.com
14) P. Barham, B. Dragovic, K. Fraser, S. Hand, T Harris, A. Ho, R.

Neugebauer, I. Pratt and A.Warfield. 2003. Xen and the art of
Virtualization. Proceeding of the nineteenth ACM symposium on
Operating systems principles, 164-177. SOSP ’03. NEW York, NY.

15) A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. 2007.
KVM: The Linux Virtual Machine Monitor. In proceedings of the
Linux Symposium, 225–230.

16) Jon Watson. 2008. VirtualBox: bits and bytes masquerading as
machines. Linux Journal, Volume 2008, Issue 166, February 2008

17) Aeronautical Radio Inc. 2005. Avionics Application Software
Standard Interface (Part 1): Required Service. ARINC
Specification 653P1-2.

18) RETMS, http://www.rtems.com
19) Swaroop Sridhar, Jonathan S. Shapiro, Eric Northup, Prashanth P.

Bungale. 2006. HDTrans: an open source, lowlevel dynamic
instrumentation system. Proceedings of the 2nd international
conference on Virtual execution environments (Jun, 2006).
VEE`12. Ottawa, Ontario, Canada.

20) Bruening, D., Garnett, T., and Amara-Singhe, S. 2003. An
Infrastructure for Adaptive Dynamic Optimizations. Proc.
nternational Symposium on Code Generation and Optimization.
265-275. CGO '03.

21) Luk, C. K., Cohn, R. S., Muth, R., Patil, H., Klauser, A., Lowney,
P. G., Wallace, S., Reddi, V. J., And Hazelwood, K. 2005. Pin:
Building Customized Program Analysis Tools With Dynamic
Instrumentation. Programming Languages Design and
Implementation (Jun. 2005), 190-200. PLDI '05.

22) H, Joe., H, Jeong., Y. Yoon., H. Kim., S. Han., and H. Jin. 2012.
Full Virtualizing Micro Hypervisor for Spacecraft Flight computer.
Digital Avionics System Conference (Oct. 2012). DASC 2012.
Williamsburg, VA.

23) LEON4 Itx board - Aeroflex Gaisler
http://www.gaisler.com/index.php/products/boards/gr-leon4-itx

 Acknowledgments This research was supported by
National Space Lab Program through the National Research
Foundation (NRF) of funded by the Ministry of Education,
Science and Technology.(NRF-2011-0020905)

 4

http://www.pikeos.com/
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://ark.intel.com/Products/VirtualizationTechnology
http://www.arm.com/products/processors/cortex-a/cortexa15.php
http://www.atmel.com/
http://www.gailser.com/
http://www.rtems.com/
http://www.gaisler.com/index.php/products/boards/gr-leon4-itx

	1. Introduction 0F
	2. Related Works
	3. Hypervisor for Spacecraft
	4. Design of Dynamic Binary Translator
	4.1 The overall structure
	4.2 Classification of instructions
	4.3 Translation rules

	5. Experiment
	6. Conclusion

