IPSJ SIG Technical Report

Issue Tracking-Based Test Data Augmentation
for Web Services

1 3

JungHyun KwoN' MATT STAATS

Abstract:

IN-Youne Ko'-2

GREGG ROTHERMEL?

Web services are widely used in software development because they offer strong advantages such as interoperability
and reusability. Web application developers who use web services, however, do not own the source code of those
services, which makes ensuring that service faults do not negatively impact applications a challenging, yet crucial
task. Fortunately, many web service providers maintain issue tracking systems by which developers can report service
issues. In this work, we present an approach for monitoring issue tracking systems and notifying service users when
a new issue is registered. Our approach helps service users find test cases related to reported issues, and generates
additional test cases to help users test their applications by using URIs from the issue tracking systems. We present the
results of an empirical study evaluating our approach, which demonstrates that our approach generates a more targeted
set of test cases for issues, and a higher rate of useful augmented test data relative to baseline approaches.

1. Introduction

Web services can be seen as building blocks in the SaaS (Soft-
ware as a Service) framework. Web services are independently
produced and reusable, and web service providers and service
consumers usually operate independently. Thus typically, appli-
cations that access web services do not have full control of those
services, rendering it difficult to determine service reliability.

One method for addressing this problem is software testing;
however, in comparison to traditional software testing, there are
several unique challenges in testing web services [2], [3]. First,
web application developers who use web services usually cannot
access the source code of the web services their applications uti-
lize, and testing methods must therefore be black box. This is re-
flected in previous work on web service testing, which evaluates
the reliability of web services based on service descriptions and
messages that are exchanged between services [1], [7], [8], [9].
This is facilitated by RESTful (Representational State Transfer)
services, which currently provide the most popular way to imple-
ment web services and maintain service API documentation writ-
ten in a natural language. However, it is difficult for a non-human
to read and process these service descriptions.

Second, the cost of testing web services is usually higher than
the cost of testing traditional software [4]. Each test requires that
a remote call be made to the service, and network latency and
restrictions on the number of calls and/or the amount of time al-

I Div. of Web Science and Tech., KAIST, Daejeon, Korea, arun-
son@Xkaist.ac.kr, iko@kaist.ac. kr

Dept. of Computer Science, KAIST, Daejeon, Korea, iko@kaist.ac.kr
SnT Centre for Security, Reliability and Trust, University of Luxem-
bourg, Luxembourg, matthew.staats @uni.lu

Dept. of Comp Science, University of Nebraska-Lincoln, Lincoln, NE,
USA, grother@cse.unl.edu

lowed to access the service (enforced by web service providers)
can result in a slow and/or expensive testing process.

There has been research on testing individual web services and
business processes that utilize them. However, to the best of our
knowledge, there has been no research on approaches for testing
applications that access RESTful web services, where faults are
caused by the web services rather than by application logic.

In this work, we address this lack by providing an approach
that relies on two technologies: test data augmentation and issue
tracking systems. Test data augmentation techniques generate
new test data from existing test data, with the aim of finding new
variants of existing test cases that utilize program inputs in differ-
ent ways, exercising different program behaviors [10] . Augmen-
tation can increase the likelihood that a program under test works
correctly, and can help engineers statistically estimate software
reliability and verify fault corrections.

Issue tracking systems or issue trackers maintain a list of issues
about the bugs and problems that occur in services provided. Un-
like issue tracking systems for traditional software, issue tracking
systems for web services use different “reproduce codes” includ-
ing URIs (Uniform Resource Identifiers), XML, and JSON data.
These reproduce codes can be provided as inputs to the web ser-
vices. Because the reproduce codes have a formal structure, it
is possible to automatically extract the codes and create new test
cases based on them.

Our approach automatically analyzes URIs that have been used
to reproduce faults reported in an issue tracking system, identifies
relevant URIs, and creates new test data by augmenting existing
test cases. The approach helps developers find new test cases re-
lated to an issue without running all test cases whenever an issue
is reported. Additionally, our approach may help developers cre-
ate new test cases that handle issues in advance. When a fault

IPSJ SIG Technical Report

Select related test cases Code Analysis

Application SEVE LY S— Issue
— tracking
T svstem
) Issue
Web service
Test cases Issue URIs

™

Test Input
information

.. Mapping tale

m Test case — Old UR| Old URIs

ISy Test case — Old URI ’
Issue URIs s Issue URIs

Augmented URIs

Fig. 1 Overall structure of process

Issue
tracking
svstem

is revealed by test cases, developers can provide remedies at the
client level such as exception handlers and bypass code until the
issue is resolved by the service provider.

To evaluate our approach, we collected issues reported in the
issue tracking systems of the Google Maps geocode API, Google
Maps direction API and Twitter API. Our subject applications
are two Java applications. We compared the results of our ap-
proach with baseline selection and augmentation approaches. Our
results indicate that our selection approach results in 12 and 5
times smaller sets of test cases and higher precision than a base-
line selection approach, and our augmented approach results in
a smaller but greater or equal rate of useful augmented test data
than a baseline augmentation approach. Our results thus indicate
that our approach can effectively produce augmented test sets.

2. Issue Tracking-Based Augmentation

Figure 1 shows the overall structure of our issue tracking-based
test data augmentation process. Each web service provider man-
ages an issue tracking system. When a new issue is registered
in one of the systems, the monitoring system analyzes the issue,
finds URIs and validates the URIs. URIs include operation names
and parameters. In the figure, “Old URIs” are URIs generated
by existing test cases for the application, and “Issue URIs” are
URIs written toward the issue. Our approach measures the simi-
larity between old URIs and issue URIs. Test cases whose URIs
achieve higher similarity scores are selected as test cases related
to the issue. The box on the right represents operations that an-
alyze test case code to determine which parameters of the opera-
tions need to be augmented. This analysis finds invoked methods
having arguments in the test cases, gathers identifiers and parame-
ter names of the methods, and stores them as a list of terms. Next,
the issue URISs, the related old URISs and the list of terms are used
to generate new test URIs. Those URIs can be used by applica-
tion developers to create additional test cases to test whether the
issue affects their applications.

2.1 Monitoring Issue Tracking Systems

Application developers can obtain new issues from a mailing
list that issue tracking systems manage, or by crawling the issue
tracker. In this work, we considered Google Maps and Twitter
APIs, each of which has associated issue trackers. We parsed
reproduce code and URIs for their issues.

Issue tracking systems recommend that service consumers
write “reproduce code” in their issue reports. For RESTful ser-

vices, URIs can constitute reproduce code. In this work we focus
on obtaining URIs automatically, so we define URI-like terms,
including URIs beginning with case insensitive strings “http” or
“https”. Table 1 shows the numbers of issues containing URI-
like terms in the issues reported until August (Google Maps
geocode, Twitter) and September (Google Maps Direction), 2013.
The total number of issues for these services was 105, 45, and
836, respectively. We checked to see how many service URIs
were among the URI-like terms; the table shows that many issues
have service URIs.

Table 1 Number of Issues Having URIs and Service URIs

Service Number of issues

Geocode API Having URIs 83/105
maps.google.com 25
maps.googleapis.com 58

Direction API Having URIs 31/45

maps.google.com 9
maps.googleapis.com 10

Twitter API Having URIs 266/836
api.twitter.com 73
search.twitter.com 7
stream.twitter.com 7

2.2 Finding Test Cases Related to Issues

We assume the common network connection meth-
ods for each language are known. For example,
java.net.URL.openConnection and java.net.URL.openStream
are used to invoke URIs in Java, and urllib.urlopen and url-
lib2.urlopen are used in Python. Next, we find the connection
methods in the application source code and insert logging code
behind the methods so that we can obtain the full URIs (old
URISs) after running test cases.

Next, we compute similarity scores between old URIs and is-
sue URIs. A URI consists of five components: scheme, authority
(host), path, query and fragment. For RESTful services, the host
name refers to a service API, and the path indicates a service op-
eration. Further, each operation parameter is linked to a query
parameter. Therefore, we measure URI similarity as follows.
(1) Check whether the authority parts of the URIs are the same.

e Check whether the two URIs belong to same service API.

(2) Measure path and query similarity.

o Identical paths indicate identical service operations. Differ-
ent paths and queries may refer to different operation and
method parameters.

e Use Levenshtein distance to measure similarity.

o For path similarity, measure string sequence similarity.

e For query similarity, measure string set similarity.

We use Levenshtein distance*! to find test cases related to an is-
sue. Levenshtein distance calculates the minimum number of ed-
its (insertion, deletion, substitution) needed to render two strings
identical. A URI can be seen as a string so we use Levenshtein
distance to measure similarity between URIs. The path part of a
URI has an hierarchical structure, so different orders of paths may
indicate different operations. Therefore, we measure the similar-
ity between string sequences. For query parameters, however, the

%1

http://en.wikipedia.org/wiki/Levenshtein_distance

IPSJ SIG Technical Report

order of parameters does not matter. Therefore, for these, we cal-
culate set similarity.

After measuring the similarity of old URIs and the issue URI,
the old URIs whose similarity scores are above the threshold are
linked to the issue URI and the test cases invoking the old URIs
are selected as test cases related to the issue.

We use the Eclipse AST parser to search for network connec-
tion methods in the applications. A regular expression is used
to search for URI-like terms in the issues. Then, the detected
URI-like terms are validated with the Python RFC 3987 URI val-
idator.*> We measure the similarity between the old URIs and
the issue URIs by using the python-levenshtein module.** Next,
we use methods in the levenshtein module to measure similarity
between string sequences and string sets. Similarity values range
from O to 1 and the smaller the number of edits is, the closer the
similarity value is to 1. In our study, “same path” refers to the
same service operation, so we set the path similarity threshold
to 1. In addition, to find any URIs having at least one common
parameter, we set the threshold to O for query similarity.

2.3 Generating Augmented Test Data

Similar to the technique proposed by McMinn et al. [6] to infer
application input type, our approach analyzes the source code of
the application to find test inputs. In the test code, we suggest
four locations that are highly likely to include parameter names
of URIs. These include (1) the identifier of the method parameter,
(2) the method identifier, (3) the class identifier, and (4) the literal
string containing the method arguments.

The code snippets from the four locations are used to find pa-
rameters to be augmented. We remove underscores, camel case
and stop words from the snippets and determine which parame-
ters of the URI are included in the snippets.

We use the Eclipse Abstract Syntax Tree (AST) parser to find
identifiers and string literals. The parameters to be augmented are
those for which identifiers and string literals contain the param-
eter names. For example, if a method identifier name is “setSin-
celd” and an issue URI’s parameter name is “since_id”, after con-
verting camel case and underscores to terms separated by a space,
the identifier name becomes “‘set since id” and the URI parameter
name becomes “since id”. Since “set since id” contains “since
id”, the augmentation technique determines that the parameter
name “since_id” is the parameter to be augmented.

3. Evaluation

We conducted an empirical study to assess our test data aug-
mentation approach. To the best of our knowledge, no compara-
ble approach exists; we therefore compared our approach to base-
line approaches described later. Our research questions were:

RQ1: Is test case selection based on mapping tables more ef-
fective than selection based on a bag of words model?

RQ2: Is test data augmentation based on code analysis more
useful than augmentation based on a parameter-based approach?

3.1 Objects of Study

As objects of study, we chose two open source Java applica-
tions. The first application, Twitter4J, is a Twitter API library
for Java.** The second application, WorkflowProject, measures
a person’s social activity.*> Twitter4] uses the Twitter API ser-
vice and WorkflowProject uses the Google Maps geocode API,
the Google Maps direction API and the Facebook API. Test cases
are provided with each project, and we used one test suite for
Twitter4J and all of the test cases for WorkflowProject.

We used issues reported in the Twitter and Google Maps is-
sue tracking systems (Table 1). The Google Maps direction API
issues consist of 45 labeled “Defect”, 44 labeled “New” and 1
labeled “FixedNotReleased”. The Google Maps geocode API is-
sues consist of 25 issues labeled “Confirmed”, 72 labeled “New”,
5 labeled “Acknowledged” and 3 labeled “NeedsMorelnfo”. The
Twitter API issues consist of 51 labeled “Acknowledged”, 212
labeled “Closed”, 9 labeled “InProgress” and 564 labeled “Unre-
viewed”. Issues labeled “Not an Issue” in the Twitter issue tracker
were not considered. The number of total valid URIs in the issues
considered was 551 for Twitter and 241 for Google Maps.

3.2 Experiment Operation

Because there is no related work that we could find on the pro-
cess of handling test data augmentation for web services, we de-
vised two possible baselines.

For test case selection our baseline technique is based on a bag
of words model. The “bag of words” model [5] is a concept
used in natural language processing. We applied the model to
the test cases associated with our object programs. We regarded
the source code for each test case as a set of terms separated by
a space. We used Apache Lucene to implement the model. The
bag of words baseline removes the stop words such as Java re-
served words and comments. Then, the baseline splits a test case
at non-letters and converts the split terms into lowercase. The
terms are stored to enable searching for relevant test cases later.
Issue URIs are also converted into terms. Host, path and query
parameter names for each URI are split at non-letters and are con-
sidered to be a query. The similarity measurement is based on a
term frequency-inverted document frequency (tf-idf) [5]. To find
relevant test cases, we set the similarity threshold to O and select
test cases with similarity exceeding this.

As a baseline technique for test data augmentation, we created
test data using parameter names common between issue URIs and
old URIs without analyzing test code.

To address RQ1, we counted the number of selected test cases
and measured their run times for our approach and the baseline
selection technique. We compared the average precision and re-
call of our approach with that of the baseline to determine how
many old URIs in the selected test cases used the same opera-
tions as issue URIs (precision) and how many test cases having
relevant URIs were selected among all the test cases having rele-
vant URIs (recall).

To address RQ?2, first, we counted the number of runnable
URIs. Runnable URIs are URIs that can receive valid responses

%2

https://pypi.python.org/pypi/rfc3987/

3 https://pypi.python.org/pypi/python-Levenshtein/

** https://github.com/yusuke/twitter4]

5 https://github.com/0925335/workflow2013

IPSJ SIG Technical Report

Table 2 Test Case Selection Result

Mean number Mean Mean Mean
of selected tests ~ runtime Precision Recall
Twitterdj
BoW 21.570 12.309 0.003 1.000
Twitterd; 1.846 4.427 1000 1.000
Mapping
Workflow
BoW 9.483 13.942 0.054 1.000
Workflow 1.848 0.686 0.609 1.000
Mapping
WorkflowProject Twitter4j
1.00 1
0.75 0.75
0.50 05
0.25 0.25

0.00 0.01 0.02 0.03 0.04 005 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Threshold e " Threshold g e ™"
Fig. 2 Precision and recall across thresholds
of Runnable # of # of
Subject augmented fixed handling
URIs .
URIs parameters issues
BoWw Map BoW Map BoW Map BoW Map
. 56/62 56/62 8/62 8/62
Twitter4] 62 62 (90.3%)(90.3%)0/62 0/62 (12.9%) (12.9%)

97/113 66/71 35/113
(85.8%)(93.0%) (31.0%)

79/113 58/71

Workflow 113 71 0/71

Table 3 Test data augmentation results

from the services when used as a request. Second, we counted
the number of URIs that cannot be generated from the applica-
tions. These URIs change parameter values that are fixed in the
applications, so the URIs are not useful. Third, we studied the
issues and counted how many augmented URIs actually handled
the URI parameters in the issues.

3.3 Results

Table 2 shows the average numbers of selected test cases, av-
erage runtimes of test cases, and the average precision and aver-
age recall for every issue containing valid URIs. Our approach
selected 12 and 5 times fewer test cases than the bag of words
baseline for each application, respectively. Also, the runtime of
our approach was 3 and 20 times faster than that of the bag of
words baseline for each application, respectively. While mean
recall values were the same for each approach, mean precision
values for our approach were much higher than those observed
for the baseline.

Low precision and recall values associated with the baseline
approach may be due to our use of a low threshold. Thus, we
set different threshold values and measured precision and recall
again. Figure 2 shows precision and recall values across different
thresholds. The x-axis corresponds to threshold and the y-axis
shows precision and recall. Precision and recall of the baseline
approach were lower than those of our approach at all levels.

Table 3 presents test data augmentation results. The table lists
the number of augmented URISs, reusable URIs, URIs that change
unchanged parameters and URIs that change parameters that an
issue mentions. While the number of augmented URIs for Twit-

(69.9%)(81.7%)

ter4] using our approach was the same as that of the baseline
augmentation approach, the baseline produced more augmented
URISs than ours for WorkflowProject.

Next, we compared runnable URIs. For Twitter4j, the number
of runnable URIs generated by the two approaches was the same.
For WorkflowProject, the baseline augmentation approach gen-
erated more runnable URIs than ours, but when we consider the
ratio of runnable URIs to the total number of augmented URIs,
the ratio for our approach is 92.96%, which exceeds the ratio for
the baseline (85.84%).

Finally, we counted the number of URIs in which the fixed pa-
rameters in the applications were changed. For both projects, our
approach did not change fixed parameters, while the baseline aug-
mentation approach changed 35 fixed parameters for Workflow-
Project. We expect that these unrealistic URIs will cause devel-
opers to require longer times to create augmented test cases and
the effectiveness of the test cases will be low. To measure this
effect, we counted the number of augmented URIs that changed
parameters related to an issue. For Twitter4]J, our approach and
the baseline approach recorded 12.90%. For WorkflowProject,
however, our approach has 81.69% of augmented URIs handling
each issue compared to 69.91% for the baseline.

4. Conclusion

Our research addresses test data augmentation for web services
using URIs reported in the web services’ issue tracking systems.
We demonstrated that our approach selects more relevant test
cases for applications using the services than the baseline selec-
tion approach in terms of precision and recall. Furthermore, our
approach produces augmented test data more effectively than the
baseline augmentation approach with respect to runnable URIs,
changed parameters and parameter handling issues. In future
work, we plan to modify our approach to reduce false positives
and evaluate the approach on additional subject applications.

Acknowledgments This work was supported by the Dual
Use Technology Program (UM13018RD1).

References

[11 Bai, X., Dong, W., Tsai, W.-T. and Chen, Y.: WSDL-based automatic
test case generation for web services testing, SOSE (2005).

2] Bozkurt, M., Harman, M. and Hassoun, Y.: Testing and verification in
service-oriented architecture: A survey, JSTVR (2012).

[3] Canfora, G. and Penta, M.: Service-oriented architectures testing: A
survey, Software Engineering, Springer Berlin Heidelberg (2009).

[4] Hou, S. S., Zhang, L., Xie, T. and Sun, J. S.: Quota-constrained test-
case prioritization for regression testing of service-centric systems,
ICSM, pp. 257-266 (2008).

[5] Manning, C. D., Raghavan, P. and Schiitze, H.: Introduction to Infor-
mation Retrieval, Cambridge University Press Cambridge (2008).

[6] McMinn, P., Shahbaz, M. and Stevenson, M.: Search-based test input
generation for string data types using the results of web queries, ICST
(2012).

[71 Mei, L., Zhang, Z., Chan, W. K. and Tse, T.: Test case prioritization
for regression testing of service-oriented business applications, WWW
(2009).

[8] Nguyen, C. D. and Marchetto, A.: Test case prioritization for au-
dit testing of evolving web services using information retrieval tech-
niques, ICWS (2011).

[9]1 Offutt, J.: Generating test cases for web services using data perturba-
tion, SEN (2004).

[10] Yoo, S. and Harman, M.: Test Data Regeneration: Generating New
Test Data from Existing Test Data, JSTVR (2010).

