

Extractive Approach for Transit of Legacy Products to Software

Product Line with Organizational, Process and Technical Factors

Seonghye Yoon, Soojin Park, Sooyong Park†1

Abstract: Extractive approach can be applied to reengineer legacy products built within project based or customized product
development model into product line. Most of the existing research related to extractive approach either analyzes commonality
and variability or focuses on architecture reengineering. However, when moving to a different development model, technical
factors as well as related process and organizational factors must be considered in order to minimize conflict within the
organization and prevent one time, event reengineering. This study proposes a model which considers all three factors and
provides a sustainable transit to product line. This model suggests that feature model be verified based on analysis of code
change logs and bug issues and conduct appropriate domain engineering scoping by taking organizational factors into
consideration.
Keywords: product line, extractive approach, organizational factors, process factors, technical factors

1. Introduction

When legacy products built within project-based or customized
product development model passes through the stable stage and
enters the evolution stage, the product’s flexibility and
variability becomes taken into consideration. This is because
despite the many commonalities of the products, the various
versions cause the maintenance cost to go up. When products
built using project-based development model produce the next
product from one product, ad-hoc reuse is used if commonality
is assessed to be high. From this point, co-management of each
product ceases to occur. Also, products built using customized
product development model have one product base and are
manageable, whereas derived products have various product
base and eventually unmanageable commonality arises among
the derived products. These methods cause problems such as
code duplication, code inconsistency, code being used in a
context different from the one initially intended[1].
Software product line is a way to solve the various products

and versions issues arising from mass customization of software
which must satisfy such diverse customer needs[2]. This makes
the common features within a family of product reusable by
making them core assets and effectively manages inter-product
variability[3], supporting time-to-market, providing flexibility,
reducing cost for the planned changes[4]. However, compared to
conventional, software product line has more burden of building
early core asset and more providing flexibility for unplanned
changes[5], thus when domain is immature or when early cost
investment is difficulty, other ways are chosen. Converting
legacy products built in this way to product line requires
extractive approach[6]. Existing relevant research analyzes
commonality and variability using only technical factors and
suggests methods of reengineering the architecture or design
based on that analysis[7][8]. However reengineering only
considering the technical factors may fail due to decreased
effectiveness compared to investment caused conflict with
existing organization or technology or end up being only one
time reengineering[9].

 †1 Sogang University

To solve these problems, this study proposes a model which
applies the extractive approach but decides domain engineering
scope for the given situation by taking into account organization,
process, and technical factors, and supports it so that it can be
converted in a sustainable way. This model verifies the coverage
of feature model with analysis results based on technical and
process factors. Then organizational factors are reflected to
determine the domain engineering scope appropriate for
reengineering.

In Section 2, this paper discusses the methods and example of
software configuration management in a family of products built
with project-based or customized product development model.
Section 3 suggests a general process model for building core
assets of products mentioned in section 2 and detailed plan for
each step. Section 4 includes the conclusion and topics for
future research.

2. Background

This section takes a look at the form of evolution and
maintenance for legacy products built within project-based or
customized product development model, and introduces a
management using subversion, a software configuration
management tool.

2.1 Evolution and Maintenance of the Legacy products

Figure 1 Products developed within the project-based

development model [1]
Based on the development model, a way of evolution and

maintenance differs for each product. Figure 1 shows the
process in which a base-line is created and managed in ad-hoc
reuse when a new product is created in a project-based
development model. After Product A has been developed to v2.0,
in order to develop a similar system, product B, code is copied
and base-line is set using ad-hoc reuse, and code is modified for

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #09

33

any other requirements not supported by product A.
Products developed within customized product development

model are composed of product base which is the base-line of
customizing and derived products which are customized from
the product base. There is a tendency to ad-hoc reuse, similar to
project-based development model, if the product base cannot
flexibly support the customizing. Since all derived products
include product base, it can be said that there are many
commonalities, just as setting a base-line with ad-hoc reuse in
project-based development model. Because commonality is
already separated into product base, transit to product line is
easy. Nevertheless, as derived products grow in number,
additional analysis will be needed for commonalities occurring
by chance.

2.2 Examples of Subversion Repository for the Legacy

products

Figure 2 shows how products with base-line from the
aforementioned ad-hoc reuse are managed with subversion, a
software configuration management tool.

Figure 2 Configuration Management Products developed within
the project-based development
Initially, Product A is managed with Trunk A. When Product B

is created, branching may occur or Trunk B may be created. In
case of branching, history management in comparison with
Product A is possible, but because it is project-based, there is a
weakness that responsibility cannot be divided clearly. For this
reason, a separate trunk is often managed as in Figure 2.
Figure 3 shows the management of products developed within

customized product development model. The locus of
responsibility is stronger than in product base, thus a separate
branch, rather than a separate trunk, is created and managed. A
branch is created for each customer requiring customizing, and
the said branch is managed until changes are merged to the
product base. While branch is being maintained, if the product
based is evolved, the incurred update cost is significant.

Figure 3 Configuration Management Products developed within
the customized product development

Branch or trunk by ad-hoc reuse can trace features since they
have the same base. Commonality or variability of features of
each version can be determined through the feature change
history. This plays an important role in extracting the feature
during transit to product line.

3. Extractive Approach for Product Line

In order to reengineer legacy products with software
configuration management similar to aforementioned products,
process model based on extractive approach as in Figure 4 is
suggested. Suggested model takes into consideration
organizational, process and technical factors so that
reengineering does not end as a one-time event and sustainable
transit to product line takes place. Organizational factors relate
to working conditions such as team building or domain
knowledge. Process factors relate to development procedures
such as code change or bugfix. Technical factors relate to
software artifacts such as feature model, design model, or code.

First, legacy products or versions to be converted are selected.
Products or versions of products are determined through
analysis of currently actively derived versions or versions with
continued maintenance plan. As certain versions are not
maintained when products are evolved, if all versions are seen
as target of analysis, then unnecessary features are analyzed and
more than necessary efforts are used. Once the target of analysis
is determined, reengineering to product line takes place through
the following 6 steps.

3.1 Feature Extract

Feature model[10] is created based on experience of
developing legacy products and needs analysis on the current
market. If there is a domain export or sufficient domain
knowledge, it is better to conduct the market analysis first. If
that is not the case, however, then it is recommended that the
legacy products analysis be conducted first.

Figure 4 Extractive Approach for Sustainable Product Line

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #09

34

3.2 Design Model Recovery

In the case that ad-hoc reuse is used as base-line or there is
same product base, the products’ design models are similar.
Recovery is done by product, and the differences are merged
and recovered as one design model.

3.3 Feature and Design Assignment

Created feature model and the relationship in elements of
design model are linked. Their relationship is very important as
the relation key in analyzing the coverage of the legacy products
features of the feature model and the change history of each
feature in the subsequent steps. Update will be continuously
while passing through each step.

3.4 Feature Model Verification with Process and Technical

Factors

This stage verified whether the feature model can cover all of
the features of the legacy products and whether the commonality
and variability were properly analyzed.

Figure 5 Change history using configuration management and
bug tracking system

Figure 5 is an example of a change history created from
recomposition of database management products‘s configuration
management system log and bug tracking system issues for
verification. Feature is composed of several tasks which
implement the feature. A task is a transaction composed of a
path from when a call starts to when it ends. When analyzing
change log, tasks are distinguished from the combination of
upper path which calls the modified function and a lower path
which the modified function calls. The type of change is
compared to related issue of bug tracking system and classified
as Bug/ Refactoring/ Requirement Add/ Requirement Change/

Requirement Delete. Bug and Refactoring type are not included
in analysis at this step since they are not factors which influence
change in features. Commonality and variability are analyzed
and recommended based on the Requirement Add, Requirement

Change or Requirement Delete type that occur for each product
and version. Feature model is verified and refined by referring
to the recommended commonality and variability.

Figure 6 is an example which refines the feature model using
the change history in Figure 5. Based on the change history of
Requirement Add type occurring in Product A and change

history of Requirement Change type occurring in Product B, it
was recommended that ‘Access control‘ is being provided for
Product A and ‘Lock‘ for Product B. Based on this, feature
model is refined. As change history analysis is based on changes
in code, there is a limit in feature abstraction. Therefore, feature
can be recommended by it is difficult to determine the feature‘s
abstraction level and provide automatic refine.

Figure 6 Example of Refining Feature Model

3.5 Design Model Refinement with Organizational Factors

Design models of legacy products must be refined into design
models for applying core assets. For this, the scope of core asset
must be set. The main factors for determining the threshold of
core asset scoping are organizational factors, and threshold
decides whether each task is included in the core asset
depending on its stability and changeability. Table 1 describes
the items which must be taken into consideration for stability
and changeability in order to be a core asset. Low stability
signifies high probability of a bug, so stability should be raised
through review or inspection. High changeability signifies that
there are still frequent changes occurring in the feature, meaning
that additional analysis of the features is necessary. High
stability and low changeability signifies a good candidate for
reuse and transit to core asset is easy.
Table 1 Things to Consider for Stability and Changeability for
Core Assets Candidates
Stability Changeability Things to Consider
High Low Good to reuse
High High Analyze feature
Low High Review, Analyze feature
Low Low Review
When stability and changeability is calculated for each feature,

core asset is scoped and reflected in the design model based on
factors changing from other development model to product line
such as the team’s work distribution in terms of organization,
organization’s management skills, and presence of domain
expert, team’s level of product line engineering knowledge.

Figure 7 Example of Core Asset Scoping

Figure 7 is an example of situation where members of domain
engineering team is not sufficient and there is not enough time
to reflect the structure in the next release so core asset is built on
to the level where stability is guaranteed and features are clear.
For example, if ‘Lock’ feature has high changeability and low
stability, and ‘Manage’ feature has low stability, then

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #09

35

appropriate factors should be put on hold in the current
organizational factors until the next reengineering period.
Finally, features can be core assets excepted gray features
considering the current organizational factors.

3.6 Reengineering to Product Line Assets

Features which belong to the core assets in 3.5 are
reengineered, made into core assets, and reflected in products.
When the products built through reengineering enter the stable

stage, new core asset scope is determined and reengineering
takes place applying the same process to the application
engineering.

4. Conclusion

As legacy products are maintained and evolved, the versions
which must be managed become various and accordingly, many
problems occur. To solve these problems, extractive approach is
used to transit to product line. Existing research focuses on
transit to product line considering technical factors. However, in
order to increase the success rate of reengineering,
organizational and process factors must be taken into account.
To that end, stability and changeability of core asset candidates
must be measured with process and technical factors. Scoping of
core asset was adjusted with the level of accommodation
through organizational factors. This alleviates the rejection of
suddenly changing development model while making
sustainable reengineering to product line possible.
This study provides a summary process. In the future, research

will be conducted on extraction of commonality and variability
through change history analysis, measurement of stability and
changeability, and adjusting of threshold.

Reference
1) W. Codenie, N. González-Deleito, J. Deleu, V. Blagojević, P. Kuvaja
and J. Similä, “Managing Flexibility and Variability: a Road to
Competitive Advantage,” in Applied Software Product Line Engineering.
CRC Press, 2010.
2) C. Krueger, “Easing the transition to software mass customization,”
Proceedings of the 4th Workshop on Software Product-Family

Engineering, Springer, 2002.
3) D. L. Parnas, “On the design and development of program families,”
IEEE Transaction Software Eng, vol. 2, 1976.
4) K. Schmid and M. Verlage, “The economic impact of product line
adoption and evolution,” IEEE Software, vol. 19, 2002.
5) K. Känsälä, “Good-Enough Software Process in Nokia,” Lecture

Notes in Computer Science, vol. 3009, Springer, 2004.
6) P.C. Clements and L. Northrop. Software Product Lines: Practices

and Patterns, SEI Series in Software Engineering, Addison–Wesley,
2001.
7) H. Lee, H. Choi, K. C. Kang, D. Kim, and Z. Lee. “Experience report
on using a domain model-based extractive approach to software product
line asset development,” ICSR ’09: Proc. of the 11th Intl. Conf. on

Software Reuse, Springer-Verlag, 2009.
8) V. Alves, P. Matos Jr., L. Cole, P. Borba, G. Ramalho, “Extracting
and Evolving Mobile Games Product Lines,” Proceedings of Ninth

International Software Product Line Conference, 2005.
9) J. Bergey, D. Smith, S. Tilley, N. Weiderman and S. Woods, “Why
Reengineering Projects Fail,” Technical Report CMU/SEI-99-TR-010,
SEI/CMU, 1999.
10) K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A. S.
Peterson, “Feature-Oriented Domain Analysis (FODA) Feasibility
Study,” Technical Report CMU/SEI-90-TR-21, SEI/CMU, 1990.

Acknowledgments This research was supported by the MKE
(The Ministry of Knowledge Economy), Korea, under the ITRC
(Information Technology Research Center) support program
supervised by the NIPA (National IT Industry Promotion
Agency) (NIPA-2012-(C1090-1231-0008)).

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #09

36

