
IPSJ SIG Technical Report

Dependency Management System with Hadoop Streaming
for Data-analytic Projects

Lin LI1,a) Sozo INOUE1,b)

Abstract: In this paper, we propose a distributed parallel processing system for data-analytic project, which manages
dependency among data and analytic programs, and re-execute updated programs and dependent programs for up-
dated data/programs. In the system, a data analyzer can specify the dependency, parts for requiring distributed parallel
processing using Hadoop Streaming, and they can be processed only for updated and dependent part, with flexibly
selecting parallel or sequential execution. The specification can also specify multiple executions for the same program
for different data as a simple statement, while their dependencies are checked separately.

1. Introduction
In the era of cloud computing, requirements for analyzing

large-scale data, such as usage log and shared data which are
collected on the server are increasing. We call a project to an-
alyze such large-scale data with various numeric and statistical
method data analytic project. In a data-analytic project, the pro-
cess to analyze data has several stages, and each of them often
generates intermediate data and/or files. At the same time, a data-
analytic project often has modifications to programs for analysis,
or addition of data files. In such a case, we need to re-execute
the analytic programs. However, the data including intermediate
data and analytic programs have dependencies among them as
for the order of execution. If we could organize such dependen-
cies and only re-execute the minimum part of the analytic pro-
cess satisfying the dependencies, we can reduce the total time of
the data-analytic project, since the program-execution time is not
negligible in big-data-analytic projects.

In this paper, we propose a processing system for data-analytic
programs in which the dependencies among programs and data
are managed, and only the programs which need to be re-executed
upon the dependencies are executed. Moreover, the system can be
executed on parallel and distributed system with Hadoop Stream-
ing[2]. The proposed system has the following features:
(1) An analyst describes the dependencies among analytic pro-

grams and data on the configuration file named ”Dakefile”.
Dakefile can also specify the part of processing to be exe-
cuted parallel processing using Hadoop Streaming.

(2) When the analyst execute the programs, s/he can select
whether to force execute whole programs or only to exe-
cute obsolete/unexecuted programs from the view point of
the dependencies.

(3) Dakefile can also describe a program to be applied to multi-
ple data files repeatedly. When a new data file are added, the

1 Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu,
804-8550, Japan

a) lilin19840702@gmail.com
b) sozo@mns.kyutech.ac.jp

program can only run for the new data file without repeating
from the first data file which has been already run.

(4) The analyst can also choose whether the execution is done in
serial or in parallel when they execute Dakefile. For exam-
ple, s/he can execute serially for while the data size is small,
and change to parallel when it becomes larger.

(5) The system provides supplemental functionality to execute
only mapper or reducer part in Hadoop, and provides li-
braries for I/O of statistical analysis program R[3].

2. Related Work
In this section, we introduce some existing systems and point

out the challenges for data-analytic projects.
Make system [1] is a popular tool to manage the build of soft-

ware. In a compiler program language, multiple source files need
to be compiled, and the processing has several stages. However,
in the software development, some of the source files are changed
and rebuild occurs frequently. Make system is able to detect and
re-execute only the compiling which is dependent to the changed
files. It means that the differential compilation is possible.

In data-analytic projects, the function of Make is also use-
ful. However, it is also necessary to understand the dependen-
cies among the subjects (programs) of processing. For example,
Make system is not intended that gcc compiler itself is modified
and re-compiled. An analysis program, which corresponds to the
compiler, is modified frequently in data-analytic project, so it is
necessary to understand such dependencies. Moreover, an ana-
lytic program may also be applied repeatedly for different data.
For example, it is the case that the same process is repeated for
a multiple sensor data files which are added daily. It is difficult
to apply Make system to specify such repeated processes in a
united manner. Although it is possible to describe the process
for each file extension in Make system, it is not possible to iden-
tify the processing content only by the extension in data-analytic
project. In addition, Make does not have parallel and distributed
processing feature by default, and is insufficient in the project of
large-scale data analysis.

MapReduce is a concept that has been simplified for paral-

c⃝ 2012 Information Processing Society of Japan 1

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #12

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
 45

IPSJ SIG Technical Report

lel distributed processing, which consists of three phases: Map,
Shuffle and Reduce. The map phase takes input records and pro-
duces output of (key, value) pairs. This is followed by a shuffle
phase that groups the (key, value) pairs by common values of the
key, and finally a reduce phase takes all pairs for a given key and
produces a new value for the same key. A developer solves prob-
lems automatically by only simply programming the Map and Re-
duce processing. MapReduce manages data placement and task
scheduling for parallel distributed processing. Hadoop Stream-
ing [4] is to provide a MapReduce using the standard I/O of the
UNIX shell. It allows users to write Map and Reduce processing
in a language other than Java. In other words, if the user uses the
standard I/O, MapReduce can be implemented in any language.
In Hadoop Streaming, a Map program writes to standard output
a single line separated value and key of each data item by a tab
character. Moreover, a Reduce program read from the standard
input in the same format. The result is a text which is output of
Reduce sorted by the keys.

In this paper, we realize to describe the dependencies men-
tioned above and to realize differential processing with Hadoop
Streaming. By this, the efficiency of data analytic project with
large-scale is expected. In addition, the analyst can choose
whether the execution is done in serial or in parallel before exe-
cuting. The throughput of Hadoop is known to be high, but when
the data size is small, the response time becomes slower than se-
rial processing. If we can choose to execute serial processing at
runtime, flexible parallel processing depending on the data size is
possible.

3. Dependency Management System for Data-
analytic Projects

In this section, the data and analytic programs of data-analytic
project is formulated by a directed graph, so we describe a sys-
tem that can implement differential processing. Using the formu-
lation, we can describe the dependencies, including the update
status of analytic program as well as data, and at run time, also
can check the dependencies individually while collectively define
an analytic program repeatedly. In addition, we realize to execute
only the unexecuted programs under the formulated dependen-
cies. Moreover, you can specify which portion of the project
is executed in parallel distributed. An analyst can also choose
whether the execution is done in serial or in parallel at run time.
It provides supplemental functionality to execute only mapper or
reducer part in Hadoop, and also provides libraries for I/O of sta-
tistical analysis program R.

3.1 Formalization of data-analytic project
In this section, we formulate the description of the project in

order to clarify data-analytic project in this paper. Here, the for-
mulation must satisfy the following requirements.
• It must represent the dependencies among the subjects of

processing, unlike the dependencies of compilation such as
the Make system. For example, in Make, it is not neces-
sary to manage the dependencies of gcc compiler. However,
since trials and errors often occur also for the processing pro-
grams themselves, we need to manage these dependencies in

the data-analytic projects.
• The repetition of the analysis program is depending on the

case. It to do in serial or in parallel should be treated flexibly.
For example, when describing the project, the same kind of
analysis is summarized in a single program. Then during ex-
ecution, it is required that only execute analytic program for
additional data.

Based on the requirements above, the analysis graph G is de-
fined to represent data-analytic Project.

G = (P,D, I,O)

P is a set of program case, D is a set of data, I is a set of input,
and O is a set of output.

We define a set of programs corresponding to analytic pro-
grams.

P̂ = {p1, p2, · · · , pn̂}

For example, if we take time windows for sensor data, and as-
sume a program that calculates moving averages move average
and a program that calculates moving standard deviations
move sd, then P̂ = {move sd,move sd}.

In fact, each of analytic programs may run multiple times for
different input data. For example like above move sd, if it is per-
formed for each data file data1.csv and data2.csv, there needs to
be distinguished between the executions of the programs of two
cases. Therefore, we define program cases P as the following.

P = {p1
i1 , p

2
i2 , · · · , p

n
in }

Here, 1 ≤ i1, i2, · · · , in ≤ n̂, denotes which program in P̂ the
program case corresponds to. In other words, p j

i is a running case
of analytic program pi. Note that G is a graph that contains a
vertex p j

i .
The data of project is defined in the data set D.

D = {d1, d2, · · · , dm}

Here, it includes intermediate data and final data, and is there-
fore necessary to be expressed flexibly when it is implemented so
that the dynamically generated data can be managed.

Between the elements of the data set D and the program set P,
a set of output edge is defined by O, and a set of input edge is
defined by I.

I = {(d, p)|d ∈ D, p ∈ P}

O = {(p, d)|p ∈ P, d ∈ D}

In other words, the relationships between analytic program and
input data are represented by I, and those between the analytic
program and output data are represented by I. Let G have no
loop, namely, for any u ∈ P, there is no path from a u to u other
than the path consisting of only u.

Figure 1 shows an example of the formulation.

3.2 System overview
Figure 2 shows the components of the system. The part of

Hadoop is the existing Hadoop Framework, and the part of user
and system are the newly developed by us. The system has the

c⃝ 2012 Information Processing Society of Japan

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #12

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
 46

Fig. 1 Example of analysis graph G

Fig. 2 System Components

following modules.
Dakefile Module: written by analysts and the analytic graph G

is described in the Dakefile.rb file.
DakeAPI Module: the module to define the grammar of Dake-

file module.
Dake Module: the main module in the system, interprets the

Dakefile defined by analyst based on DakeAPI, and man-
age the object for analytic graph using the Program module
introduced below. In addition, based on the command given
by the command line arguments, it executes the analysis pro-
grams.

Program Module: defines an object-oriented class, such as the
state variables and methods for each analytic program in the
analytic graph G.

Default Mapper Module: a default mapper program when the
mapper program is omitted in parallel and distributed pro-
cessing in Dakefile.

Hadoop Streaming Module for R: functions to handle stan-
dard input and standard output, when Hadoop Streaming is
used with the statistical analysis software R.

These modules are written by Ruby, where the flexibility of
Ruby is utilized, such as invocation of dynamic method name or
affinity for meta-programming.

We descripted each module in the following.

3.3 Dakefile
Dakefile described analytic graph G by users. It corresponding

to makefile. The following is format of Dakefile.

Program "program name", ["program file name"，・・・] do |sources|

Data ["input file name",・・・] => ["output file name",・・・] do

(Processing Content)

end

end

or

Program "program name"，["program file name"，・・・] do |sources|

Stream ["input file name",・・・] => ["output file name",・・・] do

Mapper "mapper program file name" (, number of parallel execution)

Reducer "reducer "program file name" (, number of parallel execution)

end

end

Any of the above can be repeated.
In either case, ”Program Name” specifies the elements of the

program set, and an array of ”Program file name” specifies the
name of the program file that the program is used at runtime,
which are used for checking dependency when the program is
running.

Also, if Data is specified, the array of ”input file name” means
the name of input data file, and the of ”output file name” means
the program cases. How to execute the analytic program is writ-
ten in the (processing contents), and it uses the elements the
array of ”program file name” here.

If Stream is specified instead of Data, ”input file name” and
”output file name” are the same to above, and ”mapper program
file” and ”reducer program file” mean to execute by parallel and
distributed processing. Moreover, you may also specify the num-
ber of parallel execution in Mapper and Reducer. However, they
cannot be always consistent when running in parallel, in which
case we suggest setting 1 as the number of parallel execution.

In addition, since Dakefile is program written by Ruby , it can
specify repeated definition of the analysis graph, such that multi-
ple program cases are generated for one program. Thereby, it can

c⃝ 2012 Information Processing Society of Japan 3

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #12

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
 47

IPSJ SIG Technical Report

treat repeats of analytic programs flexibly either in individually
or united.

In the line of Program, |sources| means the array of all input
data file which depends on this program, and it can handle the
newly created file in the preceding programs, which cannot be
specified in the Dakefile otherwise.

Figure 1 is an example for a graph G, and the Dakefile is as the
following:
Example of dakefile：

Program "Feature"，["Feature.rb"] do |sources|

Stream ["SensorData1.csv", "SensorData2.csv"]=>["Feature1.csv", "Feature2.csv"] do

Mapper "TimeWindow.rb", 1

Reducer "FeatureCalculation.rb"

end

end

Program "Learn"，["Learn.R"] do |sources|

Data ["Feature1.csv"] => ["EstimationModelData"] do

system("Learn.R") #call as system command．

end

end

Program "Estimation"，["Estimation.R"] do |sources|

Data ["EstimationModelData", "Feature2.csv"] => ["EstimationResultData"] do

system("Estimation.R") #call as system command．

end

end

Program "comparative"，["comparative.rb"] do |sources|

Data ["EstimationResultData", "Feature2.csv"] => ["AccuracyEvaluationData"] do

system("compare.rb") #call as system command．

end

end

In the example above, after feature calculation for sensor data
1 and 2, the former is used for machine learning, and the latter is
used for the evaluation by feeding into the generated model after
machine learning. Here, the part of feature calculation is using
Hadoop Streaming.

3.4 DakeAPI module
The grammar of Dakefile is defined in DakeAPI module, and

called from Dakefile, such as the methods of Program, Data,
Stream, Mapper, and Reducer.

3.5 Dake module
Dake module is the main program in this system, it run the

analytic program based on the given command by command-line
arguments. The following is the format of run command.

> dake.rb (COMMAND) (local)

In the format, COMMAND is one of the options below:
• all (or empty): only re-execute unexecuted program by de-

scribed graph G in Dakefile. The dependent program cases
are executed first.

• all!: regardless of whether or not latest, all programs are ex-
ecuted.

• clean: remove any d in output edges (p, d) ∈ O. Namely, it
removes all intermediate data and final data in this project.

• (program name): you can enter the name defined in Program
or Stream in Dakefile.The program name identifies the pro-
gram node in the graph G, and the node and its unexecuted
ancestor are executed.

• (program name)!: force execute the program node identified
by the program name and its ancestors.

• (program)-map: almost the same as above (program name)，
but if Stream is written in parallel distributed processing,

only the mapper part which is described by Mapper is exe-
cuted.

In the format, local can be omitted. If local is specified, the
part is executed by local machine even if it is written by Stream
as parallel distributed processing. In other words, the execution
is done in serial on the master node.

3.6 Other modules
Other than the Dakefile module, DakeAPI module, and Dake

module described above, we modules to implement the objects
to define the properties and behaviors of programs and program
cases. Among them, Program class is the class to define each
program case, in which the properties of each program case such
as related program/data files, and dependent program cases, and
methods to be called when the program case is executed. More-
over, Stream class inherits Program class, and plays a role to be
MapReduce program, which has properties to designate mapper
program and reducer program in MapReduce architecture. Of
course, Program class and Stream class have both methods to ex-
ecute checking obsoleteness, and to force execute the program
cases.

The system also provides supportive modules, such as Default-
Mapper module which defines the default mapper program which
divides the data by space and generates key and value data. Also,
the system provides modules for default I/O functions for statis-
tic software R, in which key and value data as standard input are
converted to a data frame format in R, and a data frame object is
output to standard output with the column named ’key’ being key
values.

4. Conclusion
In this paper, we proposed the dependency management system

”Dake” for data-analytic projects, in which dependencies among
data and analytic programs are managed, only the necessary pro-
grams are executed under the dependency, and a user can se-
lectively adopt parallel and distributed processing with Hadoop
Streaming dynamically.

Program cases for the same program can be executed in par-
allel, but program cases of different program are not parallelized
for now even if they are independent each other. The future work
is to optimize scheduling of program executions.

References
[1] Andrew Oram , Steve Talbott , ”make”, O ’REILLY,1997
[2] Tom White, ”Hadoop”, O ’REILLY, 2010
[3] R Development Core Team (2011). R: A language and environment for

statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

[4] Q. Ethan McCallum, Stephen Weston, ”Parallel R”, 2011
[5] Lin Li, Yuichi Hattori, Sozo Inoue, ”Study of Version Manage-

ment Method for Data-analytic Project”,Proceeding of the 12th SOFT
Kyushu Chapter Annual Conference, December 10, 2011, Saga, Japan.

[6] Lin Li, Hirotaka Hokazono, Yuichi Hattori, Sozo Inoue ”Differential
Processing for Data-analytic Projects with Parallel and Distributed Pro-
cessing”, Proceeding of Multimedia, Distributed, Cooperative and Mo-
bile Symposium(DICOMO2012), pp. 7 pages,July 4, 2012, Ishikawa,
Japan.

c⃝ 2012 Information Processing Society of Japan

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #12

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
 48

