
Journal of Information Processing Vol.20 No.1 1–4 (Jan. 2012)

[DOI: 10.2197/ipsjjip.20.1]

Regular Paper

Internationalization of Domain Dictionary
Management Tool

Shinta Inoue1 Yoichi Omori2 Keijiro Araki2

Received: xx xx, xxxx, Accepted: xx xx, xxxx

Abstract: Formal methods have an ability to provide a software model with strictly defined semantics, and it enables
verification by tools on a computer. Requirements of software, however, involving stakeholders who are not familiar
with information engineering must be maintained through the development process not only in formal specifications
but in natural languages. We proposed a process to build a formal model out of the natural description and developed a
dictionary tool to support it. The tool reduces pains to maintain the map between them and to compose a whole formal
model from each formal definitions of word in the vocabulary. It is also effective to an inter-linguistic software devel-
opment project, since formal methods can define mathematical meanings of a model of the target system, which are
common over the countries. We applied the process and the tool to a public specification of an electric pot for training
as a case study through the implementation of a simulator, and succeeded to detect some flaws in the specification.
We tested the tool and modified developing process on an international environment where requirements are written in
various natural languages in this paper.

Keywords: requirements, software tool, VDM, implementation, internationalization

1. Introduction
1.1 Background

Documents in natural language play important role in the early
stage of software development. Because system development
usually starts with requirements from domain experts, managers,
or end users, who are not necessarily familiar with informa-
tion engineering. Communications among stakeholders including
non-engineers are accordingly performed on natural language.

There is, however, a semantic gap between a natural language
and a programming language, which sometime causes discrep-
ancies between them and misunderstanding among stakeholders.
Advantages of natural languages would adversely lead into a con-
fusion from ambiguous comprehension in the later phases such
as design or implementation. The role of software engineers is a
kind of interpreter from natural language to programming lan-
guage through the design process, but the gap is so immense
though programming environments have become rich.

In other words,we believe that abstract and integral specifica-
tions should be described in natural language, and computational
and componential specifications should be described in formal
language. Formal model can compensate the semantic gap be-
tween software requirement specifications and a program code
by mathematical proofs. Thus, we propose a way to realize early
verification with our invented tool that focus on the above points
to crunch the hobble keeping consistency between two languages.

1 Graduate School of Information Science and Electrical Engineering,
Kyushu University

2 Graduate Faculty of Information Science and Electrical Engineering,
Kyushu University

1.2 Related Work
Limits of software specifications in natural language were

pointed out, and the way of formal descriptions was investi-
gated[1]. Thus, whether automatic or by hand, extraction of a
formal specification from requirements in natural language has
been studied for long time.

Most of those assume to adopt one-way process of refinement
from natural language to machine program through formal speci-
fication[2]. But, the role of natural language is revised to capture
ambiguous requirement especially in non-functional features[3].

There are two major ideas in this field. First one is algorithmic
conversion from a specification in natural language into a formal
model. Most thrived method in this type is the software cost re-
duction method(SCR) that is famous for the flight program in the
U.S. Navy[4]. SCR is a systematic toolset to store requirements
described by a restricted natural language into a table and auto-
matically refine them into a code in a specific domain [5].

Another idea is knowledge based interpretation of natural lan-
guage. In [6], extracting the data structure of the formal specifica-
tion descriptive language VDM from natural language description
is studied.

Formalization of ether conversion process or intermediate
products become more important to encompass widespread adop-
tion[7][8][9].

The rest of this paper is organized as follows. In Section 2, we
give introduce a domain dictionary management tool. In Section
3, we describe an evaluation method of the tool, the evaluation
result and the problem of the tool. In Section 4, we account for
internationalization tool by multilingual support. Finally, Section
5 concludes this paper.

c⃝ 2012 Information Processing Society of Japan 1

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #16 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers  
 61

kwanwoo
텍스트 상자   



Journal of Information Processing Vol.20 No.1 1–4 (Jan. 2012)

2. Domain Dictionary Management Tool
The domain dictionary management tool that can support the

conversion from a natural language description into a formal
specification using VDM++ was developed[10].

The tool is a plugin of eclipse which is an Integrated Develop-
ment Environment (IDE) developed[11]. It is to be noted that our
contribution is not an automatic conversion, but to help modelers’
work and communication among stakeholders.

2.1 Formal Method
Formal method is a method of verifying modeled specifica-

tion mathematically. Since a mathematical verification is possi-
ble to abstract model, not only a product but intermediate product
can be verified. Formal methods are mathematically-based tech-
niques or tools useful in developing system.They can give some
assurances based on its background logic and chance to revise
specifications of requirements at the early phase, because com-
puter software should have a nature as a finite state automaton,
and its all properties can be verified mathematically.

Formal languages have a defined semantics based on mathe-
matics to describe specifications and afford the background logic.
We adopt VDM++ as the formal modeling language in our
method[12]. VDM++ is a formal language based on set theory
and first order predicate logic. It has quite simple syntax to be
understood and affinity with object-oriented programming lan-
guages. Our tool treats an entry in dictionaries as a class, an
instance, an operation, or a function in object-oriented way.

2.2 Dictionary Management
The functions of the domain dictionary management tool are

following.
• Dictionary management
• Coloring keywords
• Output formal model

The GUI appearance of the tool is shown in Fig. 1. Dictionaries
of the tool store keywords in specifications as entries. The dic-
tionary files are managed through the dictionary view of the tool,
and they can be edited independently by other editors because the
files are in a XML format.
2.2.1 Registration and edit of Entry

A selected keyword is added to the specified dictionary as an
entry. Registration is performed on an arbitrary region as a phrase
that is specified by dragging mouse in the documents. The entry
is not limited to a lexical word but a phrase and is treated as a
keyword.

The following fields are set to the entry registered in dictionary.
• Part of speech
• Informal definition
• Metaclass
• Formal definition
“Part of speech” is a column to set attribute of the entry. “Infor-

mal definition” is a column to describe explanation of the entry
by natural language.

“Metaclass” is a column to select the item corresponding to the
block of VDM++.

“Formal definition” is the column to enter VDM++ descrip-
tion. Modeling of specifications is performed by writing in VDM
description directly in the dictionary.

2.3 Coloring entry
The tool searches and highlights the whole entry words of the

dictionary in the specification to assist coverage check by engi-
neers. The tool improves visibility of the keyword in specification
by coloring.

As a result, the visibility of keywords in the documents of nat-
ural language would be much improved for the modelers. The
complete coverage rate of the entry registered in the dictionary
can also be checked.

2.4 Model output
The tool support composition from the formal definition of

each entry in the dictionary into a model composed of descrip-
tions in VDM++. When the model output from the dictionary
form, each keyword whose type is “class” in the model, will cre-
ate an output file whose name is the same for the class. The do-
main dictionary management tool outputs VDM++ description
file to specified file by pushing “Model output button”.

In addition, if type is not “class” (“variable”, “constant”, “func-
tion”, and “operation””), they are included into the previously de-
clared class definition and output as members of the class. There-
fore, the tool can alternate two aspects for a dictionary at anytime.
Those are the registration form and the generation form, and the
former is in order to the words appear in the requirement docu-
ments and the latter is in order to represent structures of domain.

Type of “variable”, “constant”, “function”, and “operation” are
written into “instance variables”, “values”, “functions”, and “op-
erations” section of the VDM++, respectively.

The check of syntax is left to other tools such as VDM-
Tools[13] or Overture[14]. Program code generation from
VDM++ is also delegated to these external tools.

3. Evaluation of Tool
In order to evaluate the domain dictionary management tool,

we carried out a case study through the software development.
• Modeling of a specification
• Verification of the model
• Implementation of the model

We created the VDM++ model from a specification of an em-
bedded system by using the tool. Then, we verified the VDM++
model using the state transition table, and finally implemented a
simulator of electronic pot based on the VDM++ model.

3.1 Modeling
We developed a VDM++ model from a specification of an

electric pot from SESSAME[15] for training material. We ap-
plied the following procedure[10].
( 1 ) Registration of the keywords in specification to the tool’s

dictionary
( 2 ) Regulation of the dictionary’s entries which is “Noun

phrase”
( 3 ) Unification of the entries with same meaning

c⃝ 2012 Information Processing Society of Japan 2

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #16 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers  
 62



Fig. 1 Domain dictionary management tool

( 4 ) Determination of the meaning of polysemy
( 5 ) Division of class
( 6 ) Regulation of the dictionary’s entries which is “Verb phrase”

and “State”
( 7 ) Writing of the VDM++ descriptions to the dictionary
( 8 ) Output of the VDM++ model
( 9 ) Refinement of the VDM++ model

We registered 69 keywords to the dictionary. The VDM++
model was reviewed four times with VDM++ specialists, because
the abstraction level of the first model was too low.

We modify the above procedure in Sec.4.

3.2 Verification
We verified the VDM++ model created by using the tool. Ver-

ification was performed using a state transition table. Using the
state transition table is due to the VDM++ expresses behavior of
a system by state transition of class. This table was described
based on following three variables showing a state.
• State of the pot
• State of the hot-water supply
• State of error

A system state is expressed in the combination of these vari-
ables. We verified two points, as described below. One of them is
whether the states change as the intention of specification. Two
of them is that transition conditions are described correctly. As a
result of these verification, it was possible that we had mistaken
description of the conditions of a temperature error.

3.3 Implementation
We implemented a simulator based on the verified VDM++

model. Implementation consists of two steps, design and coding.
First, we designed a software using VDM++ continuously. In the
design, the addition of a class required for a program and a de-
cision of the algorithm were performed. Second, we coded the
simulator program using Java. Users can operate a simulator by

Fig. 2 Simulator of electronic pot

pushing the button on a screen and check the behavior of the pot.
The simulator of electronic pot is shown in Fig. 2.

4. Internationalization of Tool
The tool had supported only Japanese. However, software de-

velopment is recently globalized. For example, offshore develop-
ments with the overseas firms are commonly performed[16]. Def-
inition of a word in a natural language easily become ambiguous
because it drags every day meaning. Formal methods are based
on universal mathematics so that can relieve the misunderstand-
ing from different cultures or languages. Therefore, we think it is
important that the tool can support many languages.

4.1 Tool and process extension
We extend the existing tool in following points;
• Utilization of informal definition

A dictionary holds informal definition field for each entry.
We can use the field for translation from original require-
ment documents to other language. If readers who are sup-

c⃝ 2012 Information Processing Society of Japan 3

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #16 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers  
 63



Journal of Information Processing Vol.20 No.1 1–4 (Jan. 2012)

posed to be developers or programmers are not familiar with
the original language of requirements, they can intuitively
understand by reading this field.
Exact and precise meaning of each entry is still held in the
formal definition field, therefore misunderstandings which
are arose from translation of natural languages can be avoid.

• dictionary header holds language information of both input
and output
New version of this tool allows comma-separated multi-
languages in meta information of the dictionary, which is
used in case of the original requirement documents are writ-
ten in multi-languages.

There are two major stories of a multi-linguistic development.
One is vertical international specialization and another is require-
ments itself are written in multi-languages, which are correspond
to the above items respectively.

In the former case, the customers take the initiative from step
(1) through (4), thus the selection of keywords for entries and ar-
rangement of them are responsible to them. And on the contrary,
developers lead from step (5) through (9), therefore consistency
of the target model and refinements to implementation depend on
their decision. The informal definition field had been expected
as an explanation, but we can use it for side by side translations
in this case. Customers and developers can respectively use their
own natural language to understand the target, but they have to
share the same formal definition of important concepts in the do-
main.

In the latter case, the tool can utilize external tools to check
syntax or style of descriptions based on the meta information in
the extended dictionary. The roles of fields in each entry is the
same as the preceding case study, because it it not necessary to
distinct which language is used to represent keywords in the re-
quirements.

The validity of definition should be checked by few bilingual
specialist but not all stakeholders. Stakeholders can also confirm
the validity of the model by animation on VDMTools which we
used in the test case. Model animation can show probability of
the model without examination definitions.

4.2 Translation of the tool into English
First, we translate tool menu into English. Since the menu of

the tool was Japanese, we translated the menu into English. The
tool was coded by Java, we rewrite literal Japanese to English.

Next, we ran the tool with English documents on English en-
vironment. We drew up the dictionary using the tool from the
English document as evaluation of the tool. The carried-out eval-
uation is following two.
• Registration to the dictionary of English words
• Check of a coloring function

The tool could register the entries in the dictionary satisfacto-
rily, and it worked well on the English specification by using the
function of coloring keywords. Model output also worked with-
out any trouble. By taking care about a setup of the encoding of
documents, it was found that this function operates satisfactorily.
Moreover, we can conjecture that the tool can support other and
multiple languages by setting up the encoding code appropriately,

.

5. Conclusions
In this study, we developed and evaluated the domain dictio-

nary management tool.
We carried out the following two. First, we showed that the

tool was useful to support of the conversion to formal specifica-
tion from natural language. It was helpful in the check of the
correspondence relation between specification and the model to
use the dictionary. It was found that domain dictionary manage-
ment tool is effective when we detailed VDM++model stepwise.
In addition, it was also found that the management of specifica-
tion described by natural language becomes easier than not using
the dictionary. By our approach, the specifications of natural lan-
guage are also manageable.

Second, we translated and checked the tool on English and
other languages for internationalization. It was found that the
tool can be used in languages other than Japanese.

Acknowledgments Thanks to SESSAME for the publica-
tion of example specifications about an electric pot GOMA-1015.
Construction of the tool is supported by Mr. Yasuharu Yoshimura
and others in Kyushu Business Corporation. Professor Han-
Myung Chang reviewed and give useful advice to our VDM++
model. This work was partially supported by MEXT Grant-in-
Aid for Scientific Research(S) HBG4220001.

References
[1] Meyer, B.: On Formalism in Specifications, IEEE Software, Vol. 2,

No. 1, pp. 6–26 (1985).
[2] Saeki, M., Horai, H. and Enomoto, H.: Software development process

from natural language specification, Proceedings of the 11th interna-
tional conference on Software engineering, ACM, pp. 64–73 (online),
DOI: http://doi.acm.org/10.1145/74587.74594 (1989).

[3] Ryan, K.: The role of natural language in requirements engineering,
Proceedings of IEEE International Symposium on Requirements En-
gineering, pp. 240–242 (1993).

[4] Heitmeyer, C. L.: Formal Methods for Specifying Validating, and Ver-
ifying Requirements, Journal of Universal Computer Science, Vol. 13,
No. 5, pp. 607–618 (2007).

[5] Heninger, K. L.: Specifying Software Requirements for Complex Sys-
tems: New Techniques and Their Application, IEEE Transaction on
Software Engineering, Vol. SE-6, No. 1, pp. 2–13 (1980).

[6] Vadera, S. and Meziane, F.: From English to Formal Specifications,
Journal of Systems and Software, Vol. 37, No. 9, pp. 753–763 (1994).

[7] Kemmerer, R. A.: Integrating formal methods into the development
process, IEEE Software, Vol. 7, No. 5, pp. 37–50 (1990).

[8] Moreno, A. M.: Object-Oriented Analysis from Textual Specifica-
tions, Proceedings of 9 th International Conference on Software Engi-
neering and Knowledge Engineering (1997).

[9] Lee, B.-S. and Bryant, B. R.: Automated Conversion from Require-
ments Documentation to an Object-Oriented Formal Specification
Language, Proceedings of the 2002 ACM Symposium on Applied Com-
puting, pp. 932–936 (2002).

[10] Omori, Y. and Araki, K.: Tool Support for Domain Analysis of the
Software Specification in Natural Language, Proceedings of the IEEE
TENCON 2010, pp. T7–3.3(CD–ROM) (2010).

[11] The Eclipse foundation: Eclipse IDE, http://www.eclipse.org/.
[12] Larsen, P. G., Mukherjee, P., Plat, N., Verhoef, M. and Fitzgerald, J.:

Validated Designs For Object-oriented Systems, Springer (2005).
[13] SCSK systems: VDMTools Information, http://vdmtools.jp/.
[14] Overture comitee: The Overture tool, http://wiki.overturetool.org/.
[15] SESSAME: Training material electric pot GOMA-1015 (In Japanese),

http://www.sessame.jp/workinggroup/WorkingGroup2/POT Specification.htm.
[16] Aspray, W. and adn Moshe Y. Vardi, F. M.(eds.): Globalization and

Offshoring of Software A Report of the ACM Job Migration Task
Force, ACM Press (2006).

c⃝ 2012 Information Processing Society of Japan 4

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #16 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers 
 64




