
IPSJ SIG Technical Report

Archpoint and Archmapping
—Bidir ectional Traceability between Design and Code—

Naoyasu Ubayashi1,a) Yasutaka Kamei1,b)

Abstract: Architecture plays an important role in software development. Although well-designed architecture leads
to high-quality systems, it is not easy to design software architecture reflecting the intention of developers and im-
plement the result of design as a program while preserving the architectural correctness. To deal with this problem,
we propose two novel ideas:Archpoint (Architectural point)andArchmapping (Archpoint mapping). Archpoints are
points for representing the essence of architectural design in terms of behavioral and structural aspects. By defining
a set of archpoints, we can describe the inter-component structure and the message interaction among components.
Archmapping is a mechanism for checking the bidirectional traceability between design and code. The traceability
can be verified by checking whether archpoints in design are consistently mapped to program points in code. For
this checking, we use an SMT (Satisfiability Modulo Theories) solver, a tool for deciding the satisfiability of logical
formulas. The properties of archpoints and program points are encoded to logical formulas and checked by an SMT
solver.

Keywords: Architecture, bidirectional traceability, architectural point, SMT solver

1. Introduction

Architectural design plays an important role in software de-
velopment because system characteristics such as robustness and
maintainability depend on the architecture. Well-designed archi-
tecture leads to high-quality systems.

However, it is not easy to design software architecture reflect-
ing the intention of developers and implement the result of design
as a program while preserving the architectural correctness, be-
cause there is a gap between design and implementation. As one
of the important research directions in the field of software design
and architecture, Taylor et al. pointed out the need for adequate
support for fluidly moving between design and coding tasks [4].

To deal with this problem, we propose two novel ideas:Arch-

point (Architectural point)and Archmapping (Archpoint map-

ping). The purpose of these ideas is to describe software design
based on thecomponent-and-connectorarchitecture [2] and ver-
ify the traceability between design and its implementation. Arch-
points are points for representing the essence of architectural de-
sign in terms of behavioral and structural aspects. By defining a
set of archpoints, we can describe the inter-component structure
and the message interaction among components. Archmapping is
a mechanism for checking the design traceability. An archpoint
such asmessage sendin design is mapped to a program point
such asmethod callin code. All program points are not associ-
ated to archpoints because architectural design should be abstract
and the detailed considerations about implementation should not
be included in the design. Archpoints can be considered as se-

1 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819–0395, Japan
a) ubayashi@acm.org
b) kamei@ait.kyushu-u.ac.jp

lected program points that should be shared between design and
code. The traceability can be verified by checking whether arch-
points are consistently mapped to program points. This mapping
is bidirectional. For this checking, we use an SMT (Satisfiability
Modulo Theories) solver [3], a tool for deciding the satisfiability
of logical formulas. SMT generalizes SAT (Satisfiability) [3] by
adding equality reasoning, arithmetic, and other first-order theo-
ries. The properties of archpoints and program points are encoded
to logical formulas and checked by an SMT solver.

The remainder of this paper is structured as follows. In Sec-
tion 2, we point out the problems concerning design traceability.
In Section 3, the notion ofArchpointandArchmappingis intro-
duced. In Section 4, SMT-based verification is illustrated. In Sec-
tion 5, research challenges are discussed. Concluding remarks are
provided in Section 6.

2. Motivation

In this section, we point out what kinds of problems occur be-
tween design and code by using an example.

2.1 Design traceability
TheObserverpattern, one of the GoF design patterns, is con-

venient for discussing the problems between design and code, be-
cause the pattern not only has architectural characteristics such as
collaboration but also is relatively close to implementation. The
Observerpattern consists of aSubject and anObserver. When
the state of a subject is changed, the subject notifies all observers
of this new state.

Figure 1 illustrates theObserverpattern described in UML
(Unified Modeling Language). Design models can be represented
by using class diagrams, sequential diagrams, and so on. The note

c© 2012 Information Processing Society of Japan 1

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #14

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
 53

Fig. 1 Observer pattern described in UML

in the class diagram andthe sequential diagram show thatnotify
should be called under the control flow ofsetState.

Although UML is easy to read and understand, it is not easy to
write a program consistent with the design intent because it tends
to be informally described.

List 1 is a program written by a novice. The class structure
conforms to the design model and this program behaves correctly.
However, List 1 does not conform to the note in Figure 1 because
notify is not called.

[List 1]
01: public class Subject {
02: private Vector observers = new Vector();
03: private String state = "";
04: public void addObserver(Observer o){
05: observers.add(o);
06: }
07: public void removeObserver(Observer o){
08: observers.remove(o);
09: }
10: public void notify() {
11: for (int i = 0; i < observers.size(); i++)
12: ((Observer)observers.get(i)).update();
13: }
14: public String getState() { return state; }
15: public void setState() {
16: state = s;
17: for (int i = 0; i < observers.size(); i++) // code clone
18: ((Observer)observers.get(i)).update();
19: }
20: }
21:
22: public class Observer {
23: private subject = new Subject();
24: private String state = "";
25: public void update() {
26: state = subject.getState();
27: System.out.println("Update received from Subject,
28: state changed to : " + state);
29: }
30: }

In List 1, there is a code clone (line 11 - 12, line 17 - 18). A code
clone tends to occur while debugging. It is not easy for most pro-
grammers to be aware that they violate the intent of architectural
design because their programs successfully execute even if there
is a code clone. List 2 is an implementation conforming to the
design.

[List 2]
01: public void setState() {
02: state = s;
03: notify();
04: }

There is another problem in List 1. Although List 1 includes
libraries such asVector, add, remove, andprintln, they do
not appear in the design model. Should we reflect these elements
in the model ? Our answer is NO because software architecture
should be abstract and include only the essence of design intent.

Next, assume that a developer changes the old code to a new
version in whichnotify is not called directly but a method is
called fromsetState and the method callsnotify. In this case,
the design model has only constraints such thatnotify is called
under the control flow ofsetState. Thus, the design model

Fig. 2 Archpoint and Archmapping

Category Archpoint Program point (Java)
Class diagram class class definition
(UML) method method definition

field variabledefinition
Sequential diagram message send method call
(UML) message receive method execution
Data flow def field set

use field get
Table 1 Archpoint and program points (a part)

should not be changed even if the code is modified. A design
model can be related to multiple code implementations.

2.2 Problems to be tackled
Problems between design and code can be summarized as fol-

lows: 1) It is not easy to reflect the design decisions at the code
level; and 2) It is not easy to synchronize design and code with
preserving adequate abstraction level. These problems indicate
that a mechanism for checking the design traceability is needed.

3. Archpoint and Archmapping

To deal with the problems in Section 2, two novel ideasArch-

pointandArchmappingare provided.

3.1 Basic concept
Figure 2 illustrates the concept ofArchpointandArchmapping.

Archpoints are points for describing the essence of architectural
design at the adequate abstraction level.

Table 1 shows major archpoints. In general, software archi-
tecture is represented by structural and behavioral aspects. The
former can be modeled by class diagrams, and the latter can be
represented by sequential diagrams. Here, for simplicity, some
features including object instantiation and inheritance are omit-
ted in Table 1.

As mentioned before, archpoints can be considered as selected
program points that should be shared between design and code.
So, an archpoint can be mapped to a program point. Archmap-
ping is a mechanism for this purpose. Table 1 shows a mapping
in case of Java.

As illustrated in Figure 2, in our approach, an abstract model of
architectural design is represented by archpoints and constraints
among them. In the same way, an abstract model of a program is
also represented by program points and constraints among them.
The synchronization (or traceability) between design and code

c© 2012 Information Processing Society of Japan

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #14

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
 54

IPSJ SIG Technical Report

is maintained by bidirectionally mappingarchpoints and corre-
sponding program points. We can preserve adequate abstraction
level by ignoring other program points that are not associated to
archpoints. The constraints are encoded to logical formulas. The
traceability can be verified by checking the satisfiability of the
logical formulas as mentioned below.

3.2 Design description
Architecture is define as a set of archpointsA = {A1, ...,An}

and a set of constraints among them. Design is regarded correct
if the logical formula below is satisfied.Archcondi is a logical
expression for specifying a property that should be satisfied at a
set of related archpoints.

ARCHIT ECTURE= archcondA1 ∧ ... ∧ archcondAm (1)

In case of theObserverpattern, a part of architecture (notifi-
cation sequence) can be described below.Message sequence
is a predicate that issatisfied when the order of archpoint oc-
currence is correct.Message iteration is a predicate showing
iteration.By defining predicates such asinheritancerelationand
control flow, we can describe a variety of architectural properties.

Observer_Pattern :=
message_sequence(; [predicate]
cSubject_setState_message_send, ; archpoint
cSubject_setState_message_receive, ; archpoint
cSubject_notify_message_send, ; archpoint
cSubject_notify_message_receive, ; archpoint
massage_iteration(; [predicate]
cObserver_update_message_send, ; archpoint
cObserver_update_message_receive, ; archpoint
cSubject_getState_message_send, ; archpoint
cSubject_getState_message_receive)) ; archpoint

3.3 Program description
A program can be abstracted as a set of program pointsP =

{P1, ...,Pn′ } and a set of constraints among them. An imple-
mentation is consistent if the logical formula below is satisfied.
Progcondi is a logical expression for specifying a property that
should be satisfied in a set of program points.

PROGRAM= progcondP1 ∧ ... ∧ progcondPm′ (2)

In case of List 1, the behavioral aspect can be described be-
low. Calling sequence is a predicate specifying the calling se-
quence.Calling iteration is a predicate showingiteration.

Program_List1 :=
calling_sequence(; [predicate]
cSubject_setState_call, ; program point
cSubject_setState_execution, ; program point
calling_iteration(; [predicate]
Vector_size_call, ; program point
Vector_size_execution, ; program point
Vector_get_call, ; program point
Vector_get_execution, ; program point
cObserver_update_call, ; program point
cObserver_update_execution, ; program point
cSubject_getState_call, ; program point
cSubject_getState_execution, ; program point
System_out_println_call, ; program point
System_out_println_execution)) ; program point

3.4 Archmapping for traceability
A refinement mapping from an architectural design to

the code can be defined as a mapping functionrefine. In
case of theObserverpattern, a part of refinement mapping
can be defined below. The predicatesmessage sequence
and message iteration should be also mappedto
calling sequence andcalling iteration, respectively.

refine(cSubject_setState_message_send) =
cSubject_setState_call

refine(cSubject_setState_message_receive) =
cSubject_setState_execution

The refinement is correct if the following is satisfied.

re f ine(ARCHIT ECTURE) ∧ PROGRAM (3)

In case of theObserverpattern, the logical formula
re f ine(Observer Pattern)∧ Program List1 can be described as
follow. In this case, the formula is not satisfied because the first
calling sequence is false (notifyis not called and executed).
That is, List 1 does not conform to the architectural design (Ob-

serverpattern).

calling_sequence(; not satisfied (mapped from Observer_Pattern)
cSubject_setState_call,
cSubject_setState_execution,
cSubject_notify_call,
cSubject_notify_execution,
calling_iteration(
cObserver_update_call,
cObserver_update_execution,
cSubject_getState_call,
cSubject_getState_execution))

∧
calling_sequence(; satisfied (List 1)
cSubject_setState_call,
cSubject_setState_execution,
calling_iteration(
Vector_size_call,
Vector_size_execution,
Vector_get_call,
Vector_get_execution,
cObserver_update_call,
cObserver_update_execution,
cSubject_getState_call,
cSubject_getState_execution,
System_out_println_call,
System_out_println_execution))

On the other hand, List 2 conforms to the design because
the first calling sequence is satisfied. Calling sequence
is true if the programpoints specified in the arguments
are in order. In architectural design, we do not have
to consider the existence ofSystem out println call and
System out println execution because architecture should
be abstract. So,architecture does not have to be modified
even if println is removed from List 2 because the first
calling sequence remains true. The bidirectional traceability
betweendesign and code can be maintained with preserving the
adequate abstraction level.

4. SMT-based traceability check

We are developing an SMT-based support tool that automates
the traceability check. We useYices[6] as an SMT solver. We
plan to develop a tool consisting of three features: automatic arch-
points extraction from UML design models, automatic program
points (shadows) extraction from Java programs, and encoding
to theYicesinput language. In this section, the overview of our
approach is illustrated in terms ofYicesencoding.

4.1 Yices
Yicesprovides an input language whose syntax is similar to

Scheme and Lisp.Yicesdecides the satisfiability of formulas con-
taining uninterpreted function symbols with equality, linear real
and integer arithmetic, scalar types, recursive datatypes, tuples,
records, extensional arrays, fixed-size bit-vectors, quantifiers, and
lambda expressions.Yicesis effective for traceability check men-
tioned in Section 3 because these expressive logical formulas can
be used.

c© 2012 Information Processing Society of Japan 3

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #14

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
 55

IPSJ SIG Technical Report

4.2 Yices encoding
The formularef ine(Observer Pattern)∧ Program List1 can

be encoded to List 3.The symbollist1, whose definition is
omitted due to the space limitation, is an array including all pro-
gram points in List 1. The occurrence order of refine(archpoint)
specified incalling sequence andcalling iteration is en-
coded in line 08- 17. The predicatecalling iteration can be
encoded toYicesby expanding the iteration limited times (one
time in List 3). In this case, only the bounded checking is avail-
able.
[List 3]
01: (define-type_count (subrange 0 11)) ; 0<= count <= 11
02: (define i0::count)
03: ...
04: (define i7::count)
05:
06: (assert (and ; assertion
07: ;; refine(Observer_Pattern)
08: (< i0 i1) (< i1 i2) (< i2 i3) (< i3 i4)
09: (< i4 i5) (< i5 i6) (< i6 i7)
10: (= (list1 i0) cSubject_setState_call)
11: (= (list1 i1) cSubject_setState_execution)
12: (= (list1 i2) cSubject_notify_call)
13: (= (list1 i3) cSubject_notify_execution)
14: (= (list1 i4) cObserver_update_call)
15: (= (list1 i5) cObserver_update_execution)
16: (= (list1 i6) cSubject_getState_call)
17: (= (list1 i7) cSubject_getState_execution)
18: ;; Program_List1
19: (= (list1 0) cSubject_setState_call)
20: (= (list1 1) cSubject_setState_execution)
21: ...
22: (= (list1 11) System_out_println_execution)))
23:
14: (check) ; check the assertion

The assertion in List 3 is not satisfied because line 12 - 13 is not
satisfied. As demonstrated here, we can automatically check the
design traceability by usingYices.

In this paper, we discussed the traceability from the viewpoint
of a component interaction represented by a message sequence.
There are other architectural aspects such as class structure and
data flow. These aspects can be also encoded inYicesand can
be verified by its solver. These encoding rules can be catego-
rized into several patterns corresponding to architectural descrip-
tion types.

5. Research challenges

In this section, we show research challenges towards verifiable
design traceability.
Challenge 1: Verifiable architectural interface

There are several attempts to unify architecture and code. For
example, ArchJava [1] ensures that the implementation conforms
to architectural constraints.Archface[5] enhances this approach
and separates architecture definitions from actual implementation
by introducing a new interface mechanism.Archfaceplays a
role as an ADL (Architecture Description Language) at the de-
sign phase and as a programming interface at the implementation
phase. The result of the architectural design modeling is stored
in the form of Archface(ADL). After that, a program preserv-
ing the architectural intention is developed by implementing the
Archface(programming interface).Archfacecan be considered a
kind of contract between design and implementation.

Although Archface is one of the promising approaches that
bridge design and code, the traditional type systems are insuf-
ficient for inconsistency check because architectural interfaces
contain rich information that may not be able to syntactically
checked. Most type systems only check the statical aspect of pro-

gramming languages. It is an important research challenge to pro-
vide verifiable architectural interface mechanisms. We think that
Archfacecan be translated into a set of archpoints and constraints
among them.

Someone may think that it is not easy to supportArchmapping

because it is difficult to automatically extract program points and
associate them with archpoints. AdoptingArchface, this task be-
comes easy because program points shared between design and
code are explicitly declared inArchface. Using this declaration
information, program points associated to archpoints can be eas-
ily extracted by code analysis.
Challenge 2: Common traceability framework

There are a variety of checking such as“traceability between

design and code”and “traceability between design and execu-

tion”. Some kind of common framework is needed to check prop-
erties including structure, behavior, implementation, and testing.
In traditional approaches, these properties are checked by using
independent tools. For example, the behavioral aspect is checked
by model checkers and the traceability between design and code
is checked by testing. These checking activities are separated and
their theoretical bases are different each other. An SMT-based
approach has a possibility of integrating these checking activi-
ties. The behavioral aspect of architecture design can be checked
by a bounded model checker based on SMT. The traceability be-
tween design and code can be checked by the method proposed
in this paper. The traceability between design and execution can
be checked by logging the program execution and verifying the
traced data using an SMT solver.

6. Conclusion

This paper proposed two new ideas:ArchpointandArchmap-

ping. Our approach is the fruitful integration of a design abstrac-
tion mechanism based on archpoints, bidirectional mapping be-
tween archpoints and program points, and SMT-based verifica-
tion. As mentioned in Section 5, our approach can be extended to
a variety of research fields because SMT is simple and strong.

Acknowledgement

This research is being conducted as a part of the Grant-in-aid
for Scientific Research (B), 23300010 by the Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japan.

References

[1] Aldrich, J., Chambers, C., and Notkin, D.: ArchJava: Connect-
ing Software Architecture to Implementation, InProceedings of the
24th International Conference on Software Engineering (ICSE 2002),
pp.187-197, 2002.

[2] Allen, R. and Garlan, D.: Formalizing Architectural Connection, In
Proceedings of the 16th International Conference on Software Engi-
neering (ICSE’94), pp.71-80, 1994.

[3] Biere, A., Heule, M., Maaren, H. V., and Toby Walsh, T.:Handbook
of Satisfiability, Ios Pr Inc, 2009.
pp.81 - 94, 2006.

[4] Taylor, R. N. and Hoek, A.: Software Design and Architecture –The
once and future focus of software engineering, InProceedings of 2007
Future of Software Engineering (FOSE 2007), pp.226-243, 2007.

[5] Ubayashi, N., Nomura, J., and Tamai, T.: Archface: A Contract Place
Where Architectural Design and Code Meet Together, InProceedings
of the 32nd ACM/IEEE International Conference on Software Engi-
neering (ICSE 2010), pp.75-84, 2010.

[6] Yices: http://yices.csl.sri.com/

c© 2012 Information Processing Society of Japan

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #14

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
 56

