
Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #10  
 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers  
 

An Integer Programming Based Decision Making Framework 

for Application Engineering in Software Product Line Development 
 

Mohammad Fajar†1 Tsuneo Nakanishi†2   
Kenji Hisazumi†3 Akira Fukuda†4  

 
Abstract:Software product line (SPL) is emerging as an important paradigm for software development. In the SPL paradigm, 
development of each variant product, i.e. a member of the product line, is performed by configuration of core assets, which are 
artifacts shared and managed among all the members of the product line. Although this configuration must be done to satisfy 
requirements and constraints of the product, it can be time consuming and expensive for the large scale product line. Hence, in 
this paper, we propose a decision making framework with integer linear programming (ILP) for configuration process. In this 
paper we first present the framework in details and then we apply it to a real case study of the wireless sensor network (WSN) 
system family for field monitoring in order to find an optimal configuration in feature selection process. 
Keywords: Software Product Line, Application Engineering, Variability Modeling, Feature Model, Integer Linear Programming 

 

1. Introduction 

Software product line (or SPL for short) is emerging as a 
paradigm of software reuse among products in the product line.  
It has been reported that SPL development achieves impressive 
time-to-market and cost reduction as well as productivity and 
quality improvement of software intensive products [9, 10].  
SPL reuses not only software components but also software 
artifacts of various abstraction levels such as requirements, 
designs, components, test cases etc. These artifacts are 
constructed, shared and maintained among product line 
members, namely products in the product line, as core assets.  
Reuse in the SPL paradigm is not opportunistic and bottom-up, 
rather well-planned and top-down (or architecture centric). 
 SPL development consists of two parallel series of 
development processes: domain engineering and application 

engineering.  Domain engineering is a series of processes to 
construct core assets.  Application engineering is a series of 
processes to reuse the core assets in a prescribed manner and 
derive product line members.  Domain engineering requires 
more costly and complicated construction works of reusable 
artifacts than single product development, while application 
engineering becomes costless reuse works.  In the best scenario, 
the application engineer just selects or deselects features for 
his/her product; composes and configures the artifacts in the 
core assets based on the selected features in a prescribed way; 
and derive the product.  Therefore, SPL pays off if we develop 
a number of similar but different product variants. 

Commonality and variability modeling is a key concept in 
SPL.  Feature modeling with the feature diagram [6] is a 
de-facto standard technique for this purpose.  The feature 
diagram is a tree form diagram that visualizes commonality and 
variability of the product line in terms of the features equipped 
by its members.  Features are categorized based on their 
reusability in different members of the product line.  In the 
original feature diagram, the feature is categorized into 
mandatory, optional, alternative, and or-features.  So far, the 
feature diagram has been extended to represent more  

                                                             
†1,2,3,4  Kyushu University 
 

 
complicated variability.  The orthogonal variability model 
(OVM) [10] employed in this work is an instance. 

In principle, application engineering must be performed at 
inexpensive cost within a sufficiently shorter period to earn 
return more than investment for the core asset.  However, if the 
product line has a number of features and their relations are too 
complicated, it is often tough and time-consuming to find an 
optimal selection and configuration of features with satisfying 
both product requirements and constraints. 

Therefore, the authors present an integer linear 
programming (or ILP for short) [1] based decision making 
framework using the feature model to help application engineers 
in feature selection and configuration activity. The framework 
provides a formulation and a process to find an optimal feature 
selection and configuration with the ILP to derive a preferable 
product of the product line. We use ILP as a method for 
optimization problem in feature selection. The work in this 
paper is an extension to the authors’ previous work [3]. 

The remainder of this paper is organized as follows:  
Section 2 explains the variability modeling in SPL.  Section 3 
gives the related works.  Section 4 proposes the framework and 
presents evaluation using real data. Finally, Section 5 concludes 
this paper. 
 

2. Variability Modeling 

 Commonality and variability modeling is an important 
activity in SPL development.  Feature modeling (FM) [6] is a 
well-known and widely used technique to represent 
commonality and variability of the product line.  In feature 
modeling, commonality and variability among members of the 
product line are described in terms of the features that each 
member of the product line equips.  The feature is a prominent 
or distinctive concepts or characteristics that are visible to 
various stakeholders of the product line [8].  Therefore, each 
distinctive function in the product line can be a single feature.   
 In feature modeling, features are organized in a tree form.  
Each tree edge of the model means: i) the parent feature consists 
of the child feature(s); ii) the parent feature generalizes the child 

37



Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #10  
 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers  
 

feature(s); or iii) the parent feature is implemented by the child 
feature(s).  Moreover, each feature can be classified into four 
kinds of variability classification: mandatory, optional, 
alternative and or.  A mandatory feature is one equipped by 
each product line member if its parent feature is equipped in the 
member.  An optional feature is one equipped optionally by 
each product line member if its parent feature is equipped in the 
member.  An alternative feature is one equipped alternatively 
(of other features in the set) by each product line member if its 
parent feature is equipped in the member. An or feature is a set 
of features such that each product line member equips one or 
more out of them. 
 In order to represent variability more powerfully, the 
authors introduce notation of the orthogonal variability model 
(or OVM for short) [10] in the traditional feature diagram.  In 
OVM notation, variability is represented by the variation point 
and possible variants bound to the variation point as shown in 
Figure 1.  The solid edge between the variation point and the 
variant means the variant must be bound to the variation point, 
if the variation point is active in the product.  The dotted edge 
between the variation point and the variant means the variant 
may or may not be bound to the variation point, if the variation 
point is included in the product.  The multiplicity annotation 
[min..max] of the variation point means the variation point can 
bind at least min and at maximum max variants.  Therefore, 
OVM of Figure 1 means the product can have one to three 
power sources out of batteries, solar cells, wind power 
generators and the battery power source is mandatory. 
 

 
 

Figure 1: Example of Orthogonal Variability Modeling 
 
 In this paper the authors introduce the multiplicity concept 
of OVM into the traditional feature model with keeping the 
optional feature representation by circular decoration and three 
kinds of feature relationship representation (composition, 
generalization and implemented-by) of the original feature 
diagram.  Note that feature selectability of the traditional 
feature diagram can be equivalently represented as below: 
 

 
 

3. Related Works 

Products derivation can be performed using two kinds of 
process. First is configuration process, by selecting desired 
features directly from the feature model appropriate with user’s 
requirements. And the second one is specialization process, by 
performing specialization of the feature model iteratively until a 
specialized feature model that represent the user requirements is 
obtained. Specialization process takes a feature diagram and 
yields another feature diagram [2]. 

Reference [6] presents a method of finding a valid feature 
set by following the four level feature hierarchy, i.e. first 
considering capabilities, then operating environments, and 
finally domain technologies and implementation techniques, 
because this hierarchy corresponds to increasing level of details 
in the artifact space, and therefore, reflects stepwise refinement. 
In [11] researchers proposed COVAMOF, is a framework 
facilitating product derivation using four steps: product 
definition, product configuration, product realization, and 
product testing. These steps are performed iteratively until a 
final configuration meets with user’s requirements. In order to 
select the right features and components, the engineer binds 
variation points in the feature layer. However, product 
configuration in the COVAMOV involves a very complicated 
task. While reference [2], proposes staged configuration to find 
a form of configuration achieved by successive specialization 
followed by deriving a configuration from the most specialized 
feature diagram in the specialization sequence. The process of 

specifying a family member is performed in stages, where 

each stage eliminates some configuration choices and yields 

a specialized feature model. This method is a useful and 
important mechanism for software supply chains based on 
product lines. Another method is presented in Gears [7], where 
the domain engineers create and declare a global model of a 
product line and application engineers create the definition of 
the product by selecting a value for each of the feature 
declarations from the previous step.         

However, in the studies, they are focus on satisfying the 
functional requirements without considering non-functional 
requirements. There is no clear mechanism of how to decide 
selected features have satisfied user’s requirements and 
considered constraint aspects of the system.  

In this study, we provide a systematic process for 
configuration and apply optimization technique to find the 
optimal features with satisfying user’s requirements and 
constraints aspects or non-functional requirements of the 
system. 
 

4. An Integer Linear Programming Based 

Decision Making Framework for Application 

Engineering 

[1..3]

VP

Power
Source

V Solar  

Cells

Wind 

Pwr. Gen.

V
Battery

V

Mandatory

Legend:

VP Variation Point

V Variant

Optional

[1..3] Multiplicity with 

permissible range

xp xp

FM OVM

x1 x1

[0..1]

Optional 
xp

FM

x1 x2 x3

xp

OVM

x1 x2 x2

[1..1]

Alternative 
xp

FM

x1 x2 x3

xp

OVM

x1 x2 x2

[1..3]

OR

38



Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #10  
 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers  
 

 

4.1 Problem Formulation 

 ILP [1] is a class of the maximization or minimization 
problem to find a value assignment to a set of integer variables, 
denoted by x = {x1, x2, …, xn}, subject to a set of linear 
equalities or inequalities of x, denoted by p(x) = {p1(x1, x2, …, 
xn), p2(x1, x2, …, xn), …, pm(x1, x2, …, xn)}, such that maximizes 
or minimizes the given linear objective function of x, denoted 
by fobj(x) = fobj(x1, x2, …, xn). 
 In application engineering, the engineer selects or de-selects 
the features required for the product to be derived on the feature 
diagram.  The features which the engineer does not select nor 
de-select should be selected or de-selected with keeping the 
constraints posed by the product and its environment to 
maximize preferable properties. 
 Let us denote the set of all the features by F.  For each 
feature fF, the decision making framework that the authors 
propose defines one binary integer variable xf to represent if f is 
selected or de-selected; that is, 1 or 0 is assigned to xf if f is 
selected or de-selected, respectively.  These variables become 
ones of the ILP. 
 Non-functional properties such as cost, reliability, operating 
time, power consumption, etc. are dependent on the feature 
selection.  In the decision making framework, these properties 
must be represented by linear functions of {xf} (fF).  Let us 
denote the function on quality q by QFq({xf: fF}). The quality 
function may become an objective function or a constraint of the 
ILP, depending on the product line.  If a quality should be 
maximized or minimized for the product, its quality function is 
used as the objective function of the ILP. If a quality should be 
at a certain value or within a certain range, its quality function 
should be used as a constraint equality or inequality of the ILP.  
 
 

4.2 The Application Engineering Process of the ILP Based 

Decision Making 

In this section the authors present the application 
engineering process of the proposing ILP based decision making 
framework. 
Step 1:  The application engineer defines constrains on feature 
selection by linear equalities and inequalities of {xf: fF}. 
 The constraints can be defined in a straightforward manner 
according to the feature relationship and the multiplicity on 
feature selection.  For any feature having child features shown 
in the fragment of the feature diagram with OVM multiplicity 
notation: 

, 
we define the following constraint equalities and inequalities: 

𝑥𝑓𝑖
= 𝑥𝑓𝑝

 (for any mandatory feature fi) 

and m × 𝑥𝑓𝑝
≤ ∑ 𝑥𝑓𝑖

≤ 𝑛 × 𝑥𝑓𝑝

𝑀
𝑖=1 . 

 Moreover, for any require dependency fp→fq, mutually 
inclusive dependency fp↔fq, and mutually exclusive dependency 
fp↔fq in the feature diagram, we define the following constraint 
equalities: 

𝑥𝑓𝑝
≤ 𝑥𝑓𝑞

 (for require dependency  fp→fq) 

𝑥𝑓𝑝
= 𝑥𝑓𝑞

 (for mutually inclusive dependency  fp↔fq), and 

0 ≤ 𝑥𝑓𝑝
+ 𝑥𝑓𝑞

≤ 1 (for mutually exclusive dependency  fp↔fq), 

respectively. 
Step 2:  The application engineer assigns 1 or 0 based on the 
feature selection for the product to be derived.1 is assigned to xf    

if the product needs a feature f, or 0 is assigned otherwise. 

...

xp

x1 x2 x3

[m..n]

xM

Field Monitoring

Air

Air Temp.
Air

Humidity

Soil

pH
Soil

Moisture
Soil Temp.

Solar

Solar

Radiation

WSN Mote

Family

Local Env. 

Sensing

Logical Level Feature Model

Physical Level Feature Model

Air

Moisture

Power

Source
Soil

Legend:

Solar 

radiation
FS-Engine PICNIC

Engine

UV

CO2

Gas

UV

Leaf 

Wetness

HumidityTemp

Leaf 

Wetness

Temp

Crop 

Condition

Image 

Capturing

Network 

Camera

pH

Battery
Solar  

Cells

Wind   

Power Gen.

Power 

Management

[0..2]

[0..7]

[0..3] [0..1] [0..1]

[0..4]

[0..5]

[1..3][0..3][0..2]

[min..max] Alternative choice 

with permissible range

Note: The multiplicity of the optional feature without 

explicit description is [0..1]

[1..1]

39



Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #10  
 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers  
 

Step 3:  The application engineer defines non-functional 
properties of the product, which will be optimized or 
constrained in application engineering, as linear functions of {xf: 
fF}. 
Step 4:  The application engineer specifies constraints of the 
ILP as inequalities of the linear functions defined in Step 3. 
Step 5:  The application engineer adopts the linear function 
defined in Step 3 for the preferable property of the product as 
the objective function of the ILP. 
Step 6:  The application engineer solves the ILP.  The ILP 
solver gives an optimized configuration for the suspended 
features subject to the feature selection and non-functional 
properties specified in Step 4. 
 

4.3 Evaluation 

The authors applied the proposed framework to the agricultural 
sensor network product line using FieldServer [4]. 
 Figure 2 shows the feature diagram with OVM multiplicity 
notation for the product line.  We define a binary integer 
variable representing if feature is selected or not for each feature.  
Moreover, we define linear equalities and inequalities 
representing constraints on feature selection as shown in Step 1 
of the previous section.  For example, we can define the 
following equality and inequality for the feature power source. 

xpowermanagement = xpower source, 
xpower source≤xbattery + xsolar cells + xwind power gen.≤ 3xpower source. 

 Let us suppose the product to be derived needs features 
WSN Mote Family/Local Env. Sensing/{Air/{Temp, Humidity}, 
Soil/Temp, Power Management/Power Source/Battery} and does 
not need WSN Mote Family/{Local Env. Sensing/{UV, Solar 

Radiation}, Image Capturing}.  Therefore, the variables 
corresponding to these features should be bound as follows: 
 
xf =1 if ƒ is WSN Mote Family/Local Env. Sensing/{Air/{Temp, 
Humidity}, Soil/Temp,Power Management/Power 

Source/Battery} 

xf =0 if f is WSN Mote Family/{Local Env. Sensing/{UV, Solar 

Radiation},Image Capturing} 
 
The other variables corresponding to the suspended features are 
not be bound at this step. 
 Cost is the most important concern for the agricultural 
sensor network product line.  Based on data shown in 
Reference [4], we define linear functions of {xf} estimating the 
cost of each node denoted by QCost. 
 Since the cost must be less than or equal to US$400, we add 
a non-functional constraint QCost≤ US$400 to the constraints of 
the ILP.  At the same time, the product is wanted to equip more 
functions in order to execute unknown applications in future.   
Therefore, we adapt QCost→max as the objective function of the 

ILP. 
 We solve the above problem using LPSolve IDE [5] and 
obtained an optimal configuration such that the suspended 
features WSN Mote Family/{Local Env. Sensing/{Air/Leaf 

Wetness, Soil/{Moisture, pH}}, Power Management/Power 

Source/Battery, Engine/PICNIC} are selected. 
 

5. Concluding Remarks 

In this paper, the authors have presented an expressive way 
for configuration process in SPL. The proposed framework 
reduces the problem to find the best set of features satisfying 
requirements and constraints forced by the product to the ILP.  
In our case study of the agricultural wireless sensor network 
product line, we obtained an optimal configuration within the 
specified cost and power consumption.  The proposed 
framework can be used to prepare best configurations for a new 
product or to optimize existing configuration for maintenance 
purposes. 

Future works include further evaluation of the proposed 
framework with various non-functional requirements such as 
computation time and communication overheads. 
 

Reference 
1) D.-S. Chen, R.G. Batson, and Y. Dang, Applied Integer 

Programming: Modeling and Solution, John Willey & Son, 2010. 
2) K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged Configuration 
Using Feature Models, ” Proc.Software Product Line Conf. 2004, 
Springer, pp.266-283, 2004. 
3) M. Fajar, T. Nakanishi, K. Hisazumi, and A. Fukuda, “A Decision 
Making Framework for Developing Agricultural Wireless Sensor 
Network Systems,” Proc. 8th Asian Conf. for Information Technology in 

Agriculture (AFITA), Sep. 2012 (to appear) 
4) T. Fukatsu and M.Hirafuji, “Field Monitoring Using Sensor-Nodes 
with a Web Server,” J. of Robotics and Mechatronics, Vol.17 No.2, pp. 
164-172, 2005. 
5) H. Gourvest, W.Patton, and P. Notebaert, Linear Programming Solve  
(LPSolve IDE), available 
athttp://sourceforge.net/projects/lpsolve/files/lpsolve/5.5.2.0/ 
6) K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, 
“Feature-Oriented Domain Analysis (FODA) Feasibility Study,” 
Technical Report CMU/SEI-90-TR-21, SEI/CMU, 1990. 
7) C.W.Krueger, “Software Mass Customization,” white paper, 2001. 
available at http://www.biglever.com/learn/whitepapers.html 
8) K.Lee, K.C. Kang, and J. Lee, “Concepts and Guidelines of Feature, 
Modeling for Product Line Software Engineering,”Proc. 7thInt. Conf. on 

Software Reuse (ICSR), pp.62-77, 2002. 
9) L. Northrop and P. Clements, Software Product Lines: Practices and 

Patterns,Addison-Wesley, 2001. 
10) K.Pohl, G. Bockle, and F. v. d. Linden, Software Product Line 

Engineering: Foundations, Principles, and Techniques,Springer, 2005. 
11) M.Sinnema, S. Deelstra, and P.Hoekstra, “The COVAMOF 
Derivation Process,” Proc. 9th Int. Conf. on Reuse of Off-the-Shelf 

Components, pp. 101-114, 2006. 

 

40

http://sourceforge.net/projects/lpsolve/files/lpsolve/5.5.2.0/



