

VULCAN: A Workbench for Feature-Oriented Product Line

Software Development

HYESUN LEE†1 JIN-SEOK YANG†1 KYO CHUL KANG†2

1. Introduction

Software developers, especially embedded system developers,
are faced with fierce market competition with: diverse market
needs, ever increasing number of features, rapidly changing
technologies, and time-to-market pressure. To survive in this
environment and enhance their competitiveness in the market,
developers are searching for methods and tools to increase their
productivity and improve software quality. As a result, software
product line engineering (SPLE) methods and support tools have
gained popularity ([1, 2]).

There are several methods/tools ([3, 4, 5, 6, 7]) that support
SPLE. Existing methods such as [3, 4, 5] provide mechanisms
for instantiating products from assets that are created manually.
Other methods ([6, 7]) provide languages for describing product
line architectures and integration mechanisms, but development
of assets need to be done manually. With the existing method ([3,
4, 5, 6, 7]), the behavior of systems is not visible thus it is
difficult to understand and maintain the systems.

To address this limitation, we have developed a new CASE
tool, called VULCAN, that supports the entire feature-oriented
product line software development life cycle ([8]). VULCAN
uses parameterization of assets with features and instantiation of
applications through feature selection as others. However, it also
provides architecture models/patterns that make the behavior of
systems visible; user interface, control, and computation

components are separated in architecture models, and control

components can be developed based on controller specification

models provided by VULCAN. Based on these models,
VULCAN supports parameterization of product line controller
specifications (rather than code asset) that can be instantiated to
application controller specifications by selecting feature sets.
The application controller specifications can be verified and
code can be generated automatically from the verified model.
Also, VULCAN can support flexible configuration of various
deployment architectures by separating components from
components communication mechanisms.

The details of VULCAN are introduced in the following
section, and then we conclude this paper in section 3.

2. VULCAN Workbench

We first briefly introduce the overview of the workbench and
explain how it supports SPLE processes. Then, each of the tool
sets comprising the workbench is explained in detail.

 †1 Department of Computer Science and Engineering, Pohang University of
Science and Technology (POSTECH)
 †2 Division of IT Convergence Engineering (ITCE), POSTECH

2.1 Overview of VULCAN

VULCAN includes various tools for the entire phases of
feature-oriented SPLE, as shown in Figure 1. It supports both
proactive and extractive approach to SPLE, and
architecture-model-based development of product line software.
It contains open software and freeware, and most of the tools are
Eclipse plug-in applications. These tools are integrated on the
Eclipse platform, thus the workbench can be extended easily by
adding new plug-ins.

Figure 1. Overview of VULCAN workbench

How the tool sets support the feature-oriented SPLE process
is explained in the following subsection.

2.2 Engineering Process Using VULCAN

The feature-oriented product line software development
consists of two engineering processes:
 Domain engineering: the creation of a feature model and

the development of product line assets with embedded
variable (i.e., optional/alternative) features

 Application engineering: the instantiation of applications
from the assets through feature selection

Figure 2. Tools for supporting domain engineering process

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #08

29

Figure 2 depicts how the workbench is used in the domain
engineering process. An engineer(s) firstly models common and
variable features of the product line with the feature modeling

tool set. Based on the feature model, the engineer creates
product line architecture models, specify product line controllers,
and develop asset components, using the domain

architecture/component modeling tool set. The variability

management tool checks the consistency of variability across
models and shows the results to the engineer.

Figure 3. Tools for supporting application engineering process

Figure 3 describes how the application engineering process is

supported by the workbench. The engineer first selects variable
features of the feature model using the product configuration

tool. Based on the selection, the architecture-model-based

component development tool set instantiates application
architectures and application controller specifications from the
assets. The tool set also automatically verifies the specifications
and generates application controllers (code components) from
the specifications. The engineer configures process/deployment
architectures with various component connection mechanisms
using the tool set, and the process code is generated from the
architectures. Then, the application code is compiled and linked.

Each of the tool sets comprising VULCAN is explained in
detail in the following subsection.

2.3 Tool sets Comprising VULCAN

2.3.1 Domain Analysis/Product Line Reverse Engineering

Tool

In the domain engineering process, commonalities and
variabilities in a domain is analyzed in terms of features and
modeled in the feature model ([9]). The feature modeling tool
supports this activity. Using the tool, domain engineer(s) can
easily add/modify/delete features (of which some may be
mandatory, optional, or alternative) and feature dependencies
(require or exclude). Also, for each feature, its binding time,
information source, description, and attributes can be defined.
The tool validates a feature model and notifies the engineer if
any inconsistency happens (e.g., a feature and its parent have
exclude dependency).

For an extractive approach to SPLE, the feature modeling

recovering tool supports product line reverse engineering, i.e.,
analyzing variation points embedded in source code and
recovering a feature model from them semi-automatically. The
details of this tool can be found in [10].

2.3.2 Domain Architecture/Component Modeling Tool

In the domain engineering process, based on a feature model
(created using the domain analysis/product line reverse

engineering tool set in subsection 2.3.1), product line
architecture/components are modeled using the domain

architecture/component modeling tool set. As we mentioned in
section 1, VULCAN supports architecture- model-based product
line software development. We will focus on the architecture
modeling tool and architecture-model-based component
development tool in this subsection.

Using the architecture modeling tool, engineers can create
product line architecture models while embedding variable
features into the models. The product line software developed
with VULCAN is based on the common architecture model as
shown in Figure 4. As explained in section 1, to make the
system behavior visible, we separate user interface, control,
computation, and data management components ([11]). The
architecture model is a “logical architecture”; components of the
architecture will be allocated to processes/nodes later.

Figure 4. Underlying architecture model

A controller integrates components and interacts with other
controllers, and controller design embodies architectural design
decisions. Therefore, we focus on the development of
controllers using various controller specification models; we
will not address development of other components in this paper.

By analyzing industrial software products of various domains
ranging from mobile game software to factory management
applications, we could identify several controller specification
models that are commonly used. Each of models emerges based
on the characteristics of an application domain. For instance,
mobile game software is user-interaction-scenario-based while
factory control applications are typically state-based (i.e., they
react to external events based on the state of the factory).
Software that controls a system based on the states of the system,
for example, can be developed using the state-based controller
specification models ([12]). By applying an appropriate model
to develop product line controllers, we can easily understand
and maintain the behavior of controllers and thus achieve high
productivity and high quality of software as a result. We
currently provide tools that support the following four kinds of
controller specification models: state-based model ([12]),
decision-structure-based model, workflow-based model, and
interaction-scenario-based model.

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #08

30

To develop product line controllers, using the
architecture-model-based component development tool, the
engineer first selects an appropriate controller specification
model based on the characteristics of an application domain.
Then, the engineer develops the specification with embedded
variable features as variation points while integrating reusable
computation components with the specification.

To meet the variability requirements of a product line, we
must embed variation points into the specifications. We use a
parameterization approach because we only have to maintain
parameterized specification (we do not have to maintain
application-specific instances). Variable features defined in a
feature model are used to parameterize the specifications. When
product/design decisions are made by selecting features during
application engineering, these specifications are instantiated to
application controller specifications ([8]).

In the application engineering process, using the

architecture-model-based component development tool, the
engineer can instantiate an application from assets, based on
product configuration information (This information is created
using the product configuration tool in subsection 2.3.3.). It
consists of the following five activities.

1) Instantiation of an application architecture model: The
engineer can create an application architecture model instance
from a product line architecture model by selecting appropriate
features. In the product line architecture model, components and
relationships between components mapped to the selected
variable features are included in the application architecture
model; while elements mapped to unselected features are
excluded.

2) Instantiation of application controller specifications: The
application controller specification instantiator of the underlying
controller specification model automatically creates application
controller specifications from product line controller
specifications based on the selected features.

3) Verification of the specifications and code generation:

The specification instance can be verified using the
corresponding specification verification tool of the controller
specification model. After the specification is verified, then Java
source code for the controller(s) can be generated from the
specification using the application source code generation tool.
The verification and generation tools are based on our earlier
tools ([2] [15]) which are integrated in VULCAN.

4) Specification of process and deployment architecture:
The components, including controllers, created in the domain
engineering process are “logically connected.” We need deploy
them to process and deployment architectures (See Figure 5)
and also select component connection mechanisms (See Table 1.)
to physically bind these components. The process architecture
([16]) is used to define concurrent processes, each of which has
its own thread of control and may be allocated to any node on
the network. One or more controllers may be allocated to each
process. The engineer can select a connection mechanism for
each interaction relationship between components. The
connection mechanisms that the engineer can select are in Table

1 ([17]). After a process architecture is created, the engineer
develops a deployment architecture by allocating each process
to a network node using the application deployment
configuration tool. The engineer can define the network
information (e.g., IP address and port number) for each node to
finalize the deployment.

Figure 5. Deployment configuration relationship

Table 1. Component Connection Mechanisms ([17])

5) compiling/linking of code: The source code is compiled

and linked with component binding mechanisms for components
and processes defined in the previous activity.

2.3.3 Application Generation/Testing Tool

In the application engineering process, the engineer can select
variable features of a feature model using product configuration

tool. The tool verifies the feature selection and notifies the
engineer when any invalid selection is made (e.g., selecting
features that are mutually exclusive). The instantiation process
based on the product configuration was depicted in subsection
2.3.2.

After the application is created, it can be tested based on
simulation using the simulation tool. This tool provides a
method for modeling a virtual environment where control
software (the application) will be embedded and tested ([2]).
Details of the tool can be found in [18].

2.3.4 Component Development Tool

This tool set supports development of components based on
legacy code components in the context of the extractive
approach to SPLE. In the extractive approach, some legacy
components may be reused without modification, but to satisfy
the required quality attributes and/or the functional requirements,
other components might need to be modified. The legacy source

code searching tool supports identifying similar Java code by
searching legacy code database ([19]). Using the product line

reengineering tool, the engineer can analyze the legacy system
structures and separate reusable asset components from the

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #08

31

legacy systems, based on “component types” ([20]).

2.3.5 Variability Management Tool

Consistency across different lifecycle artifacts is an important
issue in software engineering. In SPLE, validating consistency
becomes even more complicated because product line assets
have embedded variabilities. This tool supports validating
consistency of mandatory/optional/alternative features across
product line assets (requirements, architectures, and
components). The details of the validation method can be found
in [10].

3. Concluding Remarks

The proposed workbench, VULCAN, is composed of various
tools for supporting the entire phases of feature-oriented SPLE
and especially provides tools for supporting
architecture-model-based product line software development.
The workbench provides the following benefits to software
engineers:

- Maintainability of asset components can be increased by
separating components that frequently change (e.g., user
interface, controller) from others.

- With a specification-based automatic verification and code
generation approach to developing controllers, we can
acquire controllers that are more error-free than
code-based approach. Also, we can easily change the
specification and generate new controllers.

- Controllers can be separated into global and local
controllers, and a distributed control network can easily be
configured by defining/changing the deployment
architecture.

- Components that rarely change (e.g., computation
components) can be tested and adapted/reused thus
achieving high adaptability/reusability.

Our tool has been applied to various product lines including
glucose monitoring systems and elevator control systems. We
could experience that maintainability of the assets has improved
substantially because a large portion of the assets are
specifications rather than code and it is easy to change the
specifications and generate application code.

VULCAN is now being applied to continuous casting process
computers at a steel works. We will improve VULCAN based on
their feedback and also will make sure that it can scale up to
support large projects. We also plan to identify and define other
types of architecture patterns to support software development
in various application domains.

Reference
1) Clements, P. and Northrop, L: Software product lines: practices and
patterns. Addison-Wesley Professional (2001)
2) Kim, K. et al: ASADAL: a tool system for co-development of
software and test environment based on product line engineering. In:
28th International Conference on Software Engineering, 783-786 (2006)
3) GEARS, BigLever Software, Inc. Austin, TX, USA:
www.biglever.com.
4) Pure::Variants, Pure-systems GmbH. Magdeburg, Germany:

www.pure-systems.com.
5) Dhungana, D. et al: DOPLER: an adaptable tool suite for product line
engineering. In: 11th International Software Product Line Conference,
Second Vol., 151-152 (2007)
6) Dashofy, E.M. et al: A highly-extensible, XML-based architecture
description language. In: Working IEEE/IFIP Conference on Software
Architecture, 103-112 (2001)
7) van Ommering, R. et al: The Koala component model for product
families in Consumer Electronics Software. IEEE Computer. 33, 2,
78-85 (Mar. 2000)
8) Kang, K.C. et al.: FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures. Annals of Software
Engineering, 5, 143–168 (1998)
9) Kang, K.C. et al.: Feature-oriented domain analysis (FODA)
feasibility study. Technical report, CMU/SEI-90-TR-21, Pittsburgh, PA,
Software Engineering Institute, Carnegie Mellon University (Nov. 1990)
10) Le, D.M. et al.: Validating Consistency between a Feature Model
and its Implementation (2012) (Unpublished paper)
11) Lee, H. et al.: VULCAN: Architecture-Model-Based Software
Development Workbench. In: Joint 10th Working IEEE/IFIP Conference
on Software Architecture & 6th European Conference on Software
Architecture (2012)
12) Harel, D. 1998. On visual formalisms. Communications of the
ACM. 31, 5 (May. 1998), 514-530.
13) Statechart. IEICE Trans. Inf. & Syst. E82-D, 2 (Feb. 1999),
398-411.
14) Lee, H., et al: Experience report on using a domain model-based
extractive approach to software product line asset development. In: 11th
International Conference on Software Reuse, 137-149 (2009)
15) Ko, K.I. and Kang, K.C.:ASADAL/PROVER: A toolset for
verifying temporal properties of real-time system specifications in
Statechart. IEICE Trans. Inf. & Syst. E82-D, 2, 398-411. (Feb. 1999)
16) Gomaa, H: A software design method for real-time systems.
Communications of the ACM. 27, 9 (Sep. 1984), 938-949 (1984)
17) Kim, K: Design and implementation of layered connectors for
software component composition. Master thesis, Dept. of CSE,
POSTECH (1998)
18) Lee, J. et al.: A real world object modeling method for creating
simulation environment of real-time systems. In: Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
pp. 93-103 (2000)
19) Kim, J. et al.: Towards intelligent code search engine. In: 24th
AAAI Conference on Artificial Intelligence, pp. 1358-1363 (2010)
20) Cho, S.: Asset component identification and re-engineering
method for an extractive software product line engineering. Master
thesis, Dept. of ITCE, POSTECH (2012)

 Acknowledgments This research was supported by the
National IT Industry Promotion Agency (NIPA) under the
program of Software Engineering Technologies Development;
by World Class University program funded by the Ministry of
Education, Science and Technology through the National
Research Foundation of Korea (R31-10100); by the Agency for
Defense Development (ADD), Korea, and has been performed
in conjunction with REALTIMEVISUAL Co., Korea.

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #08

32

