
 

Mitigating the state explosion problem 

of synthesized multi-robot controller by decentralized model* 
 

Sunghae Kim Gihwon Kwon 
{tprover, khkwon}@kyonggi.ac.kr 

 
Abstract: There are many interests to synthesize controller according to the advancement of IT convergence. In robotics 
domain, synthesis has advantages to automatically generate high-level task planning. Normally, it is possible to apply synthesis 
technique to single robot controller. However in collaboration of multi-robot, the full state space of multi-robot is to be Cartesian 
product of each robot’s state space. To mitigate this problem, we tried to apply divide-and-conquer technique to multi-robot task 
planning. Also, through multi-robot simulator developed by under this study, we verified the desired behavior of multi-robot. 
Keywords: state explosion problem, LTL, synthesis, multi-robot, simulator 

 

1. Introduction  

As controllers are present in a large proportion in the IT 
convergence environment, there are many interests in 
synthesizing controllers to operate correctly. For example, it’s 
essential to synthesis robot controllers for controlling robot 
motion to satisfy requirements in robotics domain. 

Linear Temporal Logic (LTL) synthesis is one of technique to 
generate controller[2]. In this technique, system requirements 
should be described using LTL formulas, and then check 
whether LTL formulas are realizable or not. As a synthesis result, 
controller in the form of automata is generated, if LTL formulas 
are realizable. Researches on synthesis techniques to generate 
robot controllers are attracting interest according to the 
advancement of H/W such as hybrid-controller[3]. 

Normally, it is possible to apply synthesis technique to single 
robot controller. However in collaboration of multi-robot, we 
encountered state explosion problem. Because the full state 
space of the multi-robot controller is to be Cartesian product of 
each robot’s state space. Even though LTL formulas are 
realizable, if the state explosion problem occurred, then it takes 
a lot of time to do synthesis, so that it is necessary to minimize 
or mitigate this problem. There are several approaches to reduce 
the state explosion problem, such as abstraction, symmetry, 
divide-and-conquer and so on [4]. 

In this study, we tried to use divide-and-conquer to reduce 
state explosion problem. In other words, we specified each 
robot’s requirements specification separately, and added shared 
minimum information which enables each robot to collaboration. 
In shortly, to reduce the state space, we used decentralized 
collaboration model rather than centralized collaboration model. 
Also we applied this model to Poli-Heli scenario. 

The remainder of this paper is organized as follows: Section 2 
provides the reader with a necessary background. Section 3 
describes process of synthesizing controllers with Poli-Heli 
scenario. In section 4, we show that the architecture of 
multi-robot simulator and how we simulate a collaborative 
multi-robot task planning. Finally, we conclude the paper with 
future works. 

                                                                 
* This works is supported by Gyonggi Regonal Research Center, Gyonggi-Do 
[2012, Application Software Development Technique based on Mobile Platform] 

2. Preliminaries 

In this section, we describe background of this study. For 
more detailed information, see [5]. First, LTL provides operators 
used in propositional logic such as ￢, ∨, as well as some 

temporal operators such as ○, ◇, □. 

DEFINITION (Syntax of LTL) 

Let AP is a set of atomic propositions. The syntax of LTL 
formula is given by the following BNF rule. 

ϕ ::= true | p |￢ϕ | ϕ1∨ϕ2 | ○ϕ | ◇ϕ | □ϕ 

In the above rule, true is a constant that represents always true, 
p is any propositional variable belongs to AP and ￢, ∨ are 
propositional operators which represent negation and 
disjunction respectively. And also, ○, ◇, □ are temporal 
operators which represent next, future, always respectively. In 
this paper, we introduced only a subset of operators, but we can 
define other operators using these operators, for example ϕ1⇒ϕ2 
is equal to ￢ϕ1∨ϕ2. 

DEFINITION (Semantics of LTL) 

The semantics of LTL formula ϕ is defined over an infinite 
sequence σ of truth assignments to the atomic proposition pAP. 
For the convenience, we first define some notations for infinite 
sequence. For infinite sequence σ, we denote set of truth 
propositions of i-th in σ as σ(i). Also we denote that ϕ is satisfied 
on i-th of infinite sequence σ as σ, i | ϕ. Using these notations, 
we can define semantics of each operator as follows: 

σ, i | true 
σ, i | p      iff  pσ(i) 

σ, i | ϕ1∨ϕ2  iff  σ, i | ϕ1 or σ, i | ϕ2 

σ, i | ○ϕ   iff  σ, i+1 | ϕ 

σ, i | ◇ϕ   iff   j  i  σ, j | ϕ 

σ, i | □ϕ   iff   j  i  σ, j | ϕ 

As following above definition, LTL formula ○ϕ means that 

ϕ is true in next state, also ◇ϕ means that ϕ is true in some 

future states, finally □ϕ means that ϕ is true in all future states. 
Using these syntax and semantics, system requirements can 

be defined as LTL formulas. LTL synthesis is a technique that 
takes as input LTL formulas, and then generates controller 
which meets LTL formulas [5]. It is necessary to limit input 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers 

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #02 

5



 

 

formulas for synthesis to work well. In other words, if we use 
full LTL formula, we can get a expressive power but synthesis 
algorithm is to be more complex, so that we should describe 
requirements using LTL fragment which has normal expressive 
power but synthesis algorithm is to be less complex. 

Normally, the system interacts with environment continuously. 
Therefore, when we write requirements, we should consider not 
only system but also environment, so that requirements should 
be described in following form: 

DEFINITION (LTL formula representing requirements) 

The requirements should be described using LTL formulas of 
the form se   . e is an assumption about the environment, 

and s  represents the desired behavior of the system. More 

precisely, both e  and s  have the following structure: 
s

g

s

t

s

i

e

g

e

t

e

i   se   ,   
where e  represents an assumption of the environment, and it 

consists of the conjunction of formulas e

i , e

t , e

g  and the 

meaning of these formulas is as follows: 
e

i : non-temporal boolean formulas (
iB ) constraining the 

initial value(s) for the environment. 
e

t : represents the possible states of the environment. It 

consists of the conjunction of formulas of the form
iB  □ . 

e

g : represents the goal assumptions for the environment. It 

consists of the conjunction of formulas of the form
iB◇  □ . 

The formulas s  represents the desired behavior of the 

system, and it consists of the conjunction of formulas s

i , s

t , 
s

g  and the meaning of these formulas is similar to the meaning 

of environment, so we can omit it. 
The formula s

g

e

g    which consists of the goal of the 

environment and the goal of system, is a Generalized 
Reactivity(1) formulas (GR(1)) [1]. 
As shown before, requirements are described in the 
assume-guarantee form se   . In other words, the system 
guarantees desired behaviors only when the environment acts as 
expected. As the system doesn’t need to consider all 
circumstances, this restriction of the environment simplifies 
synthesis algorithm. 

3. Poli-Heli Robots 

3.1 Centralized Collaboration Model 

As a case study of collaborative multi-robot, we show that 
Poli-Heli scenario. The requirements of Poli-Heli are as follows: 
“Poli and Heli are patrol robots. Poli moves clockwise from r1 

in r1, r2, r3 and r4, when Poli detects injured people then stay 

there. Heli moves clockwise from r5 in r5, r6, r7 and r4, and does 

as Poli. Because only one robot can be in r4 at a time, if one 

robot enters in r4 already, then another robot needs to wait until 

the robot has passed in r4”. 

The following figure shows that workspace seven connected 
regions. In figure 1, circle denotes Poli robot and rectangle 
denotes Heli robot. The r4 is a critical section where one robot 
can pass only. 

 

Fig. 1. The workspace and initial regions 
 

We describe the process of specifying above requirements 
into LTL formulas. At first, for generating centralized controller, 
we specified requirements as one LTL specification. 

First, Poli should know the information },{ 4
HP rhelp from 

environment. Variable Phelp indicates that Poli detects an 

injured people in patrol, and Hr4  indicates that Heli is passing 

in r4. Also, Heli should know the information },{ 4
PH rhelp  

similar to Poli. Using these variables, we can specify centralized 
model of environment’s requirements as follows: 

HP rhelp 4   --------------- (1) 

PPPPP helprrrr  ○)( 4321  --- (2) 

Hr4◇  □   -------------------- (3) 

PH rhelp 4  ---------------- (4) 

HHHHH helprrrr  ○)( 4765  -- (5) 

Pr4◇  □   -------------------- (6) 

The formula (1) represents that Poli doesn’t detect injured 
people and Heli is not in r4. The formula (2) is a transition 
relation condition of environment, and represents that Poli 
doesn’t detect injured people in other regions excepts r1, r2, r3 
and r4, and the formula (3) represents that if Heli is passing in r4, 
then Heli will have passed in r4 eventually. 

The formulas (4), (5), and (6) are same formulas with Poli’s 
except that robot is changed into Heli. The centralized model of 
environment consists of the conjunction of formulas from (1) to 
(6) without same variables. 

The centralized model of system’s requirements is as follows: 
PPPP rrrr 4321  ------------ (7) 

)(  □ 4mod)1(

4

1

P

i

P

i
i

rr 


   ------------ (8) 

















































)  ○(

)  ○(

)  ○(

)  ○(   

  □

4
4

3
3

2
2

1
1

P

i
i

P

P

i
i

P

P

i
i

P

P

i
i

P

rr

rr

rr

rr

------------ (9) 

)  ○()  ○( 3343
PPHP rrrr  ------- (10) 

)  ○(  ○
}4,3,2,1{

P

i

P

i

P

i

rrhelp 


 ---- (11) 

)(◇  □
}4,3,2,1{

PP

i
i

helpr 


 --------- (12) 

HHHH rrrr 4765  ----------- (13) 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers 

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #02 

6



 

)(  □ 4)4mod(3

4

1

H

i

H

i
i

rr 


   ----------- (14) 

















































)  ○(

)  ○(

)  ○(

)  ○(   

  □

7
7

6
6

5
5

4
4

H

i
i

H

H

i
i

H

H

i
i

H

H

i
i

H

rr

rr

rr

rr

----------- (15) 

)  ○()  ○( 7747
HHPH rrrr  ------ (16) 

)  ○(  ○
}7,6,5,4{

H

i

H

i

H

i

rrhelp 


 --- (17) 

)(◇  □
}7,6,5,4{

HH

i
i

helpr 


 -------- (18) 

The formula (7) is initial condition of system, and represents 
Poli starts from r1. The formulas (8), (9), (10) and (11) are 
transition relation of system. The formula (8) represents robot’s 
moving relationship between regions, and the formula (9) 
represents that Poli should be in one region only at a certain 
time. The formula (10) represents that if Poli is in r3 and Heli is 
in r4, then Poli should stay in r3, also the formula (11) represents 
that if Poli detects an injured people in some regions, then stay 
there. Finally, the formula (12) is the goal of system, represents 
that Poli should infinitely often patrol r1 from r4 unless there is a 
need for help. 

The formulas from (13) to (18) represent initial condition, 
transition relation and goal, and have the same meaning with 
Poli’s specification. As explained before, the conjunction of 
formulas from (7) to (18) is centralized model of system’s 
requirements. 

We got a controller as automata form from JTLV(Java 
Temporal Logic Verifier)[6] which took as input centralized 
model of Poli-Heli specification of the form of LTL formulas, 
and checked realizable internally. It took a lot of time to 
generating automata which have 1,385 states. The following 
figure shows fragment of generated automata. 

 

Fig. 2 Fragment of centralized controller 

3.2 Decentralized Collaboration Model 

To reduce or mitigate state explosion problem, we tried to 
specify Poli and Heli individually, and minimize information 
sharing for collaboration. In other words, Poli regards Heli as 
environment, and Heli regards Poli as environment. 

As centralized model, Poli should know },{ 4
Hrhelp from 

environment. In decentralized model, variable duplication 
problem doesn’t happen, so that we don’t need to use superscript 
notation to help variable. Using these variables, we can specify 
environment’s requirements of Poli as follows: 

Hrhelp 4   ---------------- (1) 

helprrrr PPPP  ○)( 4321  --- (2) 

Hr4◇  □   ------------------- (3) 

The environment’s requirements of Poli are conjunction of 
formulas from (1) to (3). On the other hands, the system’s 
requirements of Poli are as follows: 

4321 rrrr  ----------- (4) 

)(  □ 4mod)1(

4

1




 ii
i

rr   ---------- (5) 

















































)  ○(

)  ○(

)  ○(

)  ○(   

  □

4
4

3
3

2
2

1
1

i
i

i
i

i
i

i
i

rr

rr

rr

rr

---------- (6) 

)  ○()  ○( 3343 rrrr H  ------- (7) 

)  ○(  ○
}4,3,2,1{

ii
i

rrhelp 


 ---- (8) 

)(◇  □
}4,3,2,1{

helpri
i




 ---------- (9) 

The formula (4) is initial condition of system, and represents 
Poli starts from r1. The formulas (5), (6), (7) and (8) are 
transition relation of system. Finally, the formula (9) is the goal 
of system, represents that Poli should infinitely often patrol r1 
from r4 unless there is a need for help. The conjunction of 
formulas from (4) to (9) is requirements of Poli. 

The requirements of Heli are the same with Poli, excepts that 
environment variables are },{ 4

Hrhelp  and initial region and 
patrol regions of Heli are r5 and r5, r6, r7, r4 respectively. 
Because requirements of Heli are the same with Poli except 
above variables, we describe Poli’s requirements only. 

 

 

Fig. 3 Decentralized Poli-Heli controllers 
 

The JTLV decided that realizability of decentralized model of 
Poli-Heli is true. So we got two controllers as automata form, 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers 

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #02 

7



 

each controls motion of Poli and Heli to satisfy requirements. 
As shown in figure 3, the automaton of Poli has 19 states, and 

Heli has 18 states. Comparing the number of state of centralized 
model, the sum of states of two automata is much less than 
centralized model. Because Poli considered to critical section r4 
only, rather than considered whole regions, therefore Poli got a 
reduced automaton. Also, Heli was the same with Poli. 

4. Collaborative Multi-Robot Simulator 

In robot task planning, the LTLMoP[7] is a Python-based 
toolbox for robot simulation. However, the LTLMoP supported 
to simulate single-robot task planning only, so it was difficult to 
simulate collaborative multi-robot task planning. To overcome 
this problem, we extended the LTLMoP to simulate 
collaborative multi-robot task planning. The following figure 
shows architecture of multi-robot simulator. 

 

Fig. 4 The architecture of multi-robot simulator 
 

To simulate multi-robot task planning, it is necessary to run 
FSA modules as the number of robots. As each FSA module 
needs a unique udp port, we modified to use an individual port 
for each FSA module, and extended protocol to transfer robot 
name. Also, in collaborative multi-robot task planning, each 
robot needs to recognize current region of other robots, we 
added shared buffer which stores current region of each robots. 
Finally, we extended simGUI module to store position and 
velocity of multi-robot. 

To verify decentralized model of Poli-Heli, we simulated 
Poli-Heli scenario using extended LTLMoP. The figure 5 shows 
that the result of simulation using extended LTLMoP simulator. 
In this figure, circle denotes Poli, and rectangle denotes Heli. If 
Poli moves in r4 already, Heli stops in r7. After Poli passes in r4, 
then Heli moves in r4. 

 

 

Fig. 5 Simulation of Poli-Heli collaboration 

5. Conclusion 

Now a day, there are many interests to controllers which 
control robots, automobiles, even medical devices dealing with 
human life according to the advancement of IT convergence. 
The LTL synthesis is a technique to generate correct and robust 
controller automatically. It takes as input requirements of LTL 
formulas, and checks realizability, if result is true then synthesis 
generates target controller as automata form. 

It is possible to apply LTL synthesis to single robot controller. 
However in collaboration of multi-robot, the full state space of 
multi-robot controller is to be Cartesian product of each robot’s 
state space. To mitigate this problem, we tried to use 
divide-and-conquer technique, so that we specified each robot’s 
requirements individually, and to minimize shared information 
which enables each robot to collaboration. To verify this 
technique, we applied it to Poli-Heli scenario. As a result, we 
got the much reduced states automata. Also, we extended 
LTLMoP to simulate collaborative multi-robot. The extended 
LTLMoP helps to understand formulas and debug multi-robot 
specification through visualization of multi-robot task planning. 
Reference 

1. N. Piterman, A. Pnueli, and Y. Sa'ar. "Synthesis of 
Reactive(1) Designs", In Proc, 7th International Conference 
on Verification, Model Checking and Abstract 
Interpretation, 2006 

2. T. Wongpiromsarn, U. Topcu and R. Murray, “Automatic 
Synthesis of Robust Embedded Control Software” In Proc, 
AAAI 2010. 

3. Hadas Kress-Gazit, "Transforming High Level Tasks to 
Low Level Controllers, PhD Dissertation, 2008. 

4. C. Baier and J. P. Katoen, Principles of Model Checking, 
Massachusetts Institute of Technology, 2008. 

5. E. Allen Emerson. Temporal and modal logic. In Handbook 
of theoretical computer science (vol. B): formal models and 
semantics, pp.995-1072. MIT Press, Cambridge, MA, USA, 
1990 

6. A. Pnueli, Y. Sa’ar and L. D. Zuck. “JTLV: A Framework 
for Developing Verification Algorithms” In Proc, CAV, 
LNCS 6174, pp. 171-174, 2010. 

7. LTLMoP, http://ltlmop.github.com/ 
Sunghae Kim 
1996 : received B.S. in Computer Science from 
Kyonggi University 
1998 : received M.D. in Computer Science 
from Kyonggi University 
2008 ~ : under Ph.D. course in Computer 
Science from Kyonggi University 
Research Area : Model Checking, Synthesis 
Gihwon Kwon  
1985 : received B.S. in Computer Science from 
Kyonggi University 
1987 : received M.D. in Computer Science 
from Chung-Ang University 
1991 : received Ph.D. in Computer Science 
from Chung-Ang University 
1991 ~ : Full professor in the Dept. Computer 

Science, Kyonggi University 
Research Area : Software Engineering, Formal Methods, 
Model Checking, Synthesis 
 

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers 

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #02 

8

http://ltlmop.github.com/



