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マトリクス分解から見た項目反応理論の精度評価と
実試験データへの適用

廣瀬 英雄1,a)

概要：マトリクス分解から見た項目反応理論の精度評価を実試験データによって確認した．項目反応理論
から推定された応答マトリクスと同等なマトリクス分解による低ランクマトリクスのランクは低いが項目

反応理論の予測能力は高い．
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Matrix Decomposition Perspective for Accuracy Assessment of Item
Response Theory with Applications to Actual Examination Data

Hirose Hideo1,a)

Abstract: This paper investigates the predictive effectiveness of item response theory from matrix decom-
position perspective. Comparing the difference in terms of matrix norm between the observed item response
matrix and the estimated item response matrix with that between the observed item response matrix and
the low-rank approximation matrix generated by the matrix decomposition method, it is found that the rank
of the generated low-rank approximation matrix that is equivalent to the estimated item response matrix is
very low. However, the predictive ability of item response theory still seems to be high enough.

Keywords: Item response theory, matrix decomposition, singular value decomposition, Frobenius matrix
norm, incomplete matrix treatment.

1. Introduction

Item response theory (IRT) ([1], [2], [6], [23]) is a the-

ory based on a statistical parametric model that simulta-

neously assesses abilities of examinees and difficulties of

problems. Because of its versatility and reliability, IRT

has been regarded as one of the standard methods in as-

sessing the performance of examinees. For this reason,

IRT is used in various official examinations, including the

TOFLE. To an observed item response matrix consisting

of examinee user rows and problem item columns, esti-

mates of IRT parameters and their confidence intervals
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can be obtained using the maximum likelihood estimation

method.

The maximum likelihood estimators are known to be

consistent and asymptotically efficient under certain con-

ditions ([10]); that is, no consistent estimators have lower

asymptotic mean squared errors other than the maximum

likelihood estimators. This means that under the assumed

mathematical model and its parameter space, the estima-

tors are the best. However, there might be other models

that are better than IRT. While the AIC (Akaike’s infor-

mation criterion) is often used to compare the superiority

of parametric models, we use another criterion, the root

mean squared error (RMSE), in order to accomplish such

a purpose. This is a primary challenge to see the pre-

diction effectiveness of item response theory from a new
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perspective; we look at the item response matrix itself di-

rectly from the matrix decomposition perspective. The

typical data cases corresponding to this new look appear

in the examination data in education.

Using the estimates for parameters in IRT, the item

response matrix can be reconstructed; we call this the

estimated item response matrix. Then, the difference be-

tween the observed and estimated item response matrices

can be computed using an appropriate matrix norm such

as the Frobenius matrix norm. Thus, it is possible to mea-

sure how close the observed item response matrix is to the

estimated item response matrix. This is the criterion to

measure the difference between two matrices.

Many researchers have proposed new methods to

achieve superiority over the standard IRT performance.

For example, multidimensional item response theory

(MIRT) (see [15]) and knowledge tracing (KT) (see

[13], [24]) have been proposed to find examinee proficiency

using parametric models. [25] describe the results of a

performance comparison among those parametric mod-

els. In the evaluation of parametric models, the log-

likelihood values are primarily used. In a nonparametric

approach, [21] show how to predict student performance

using a recommender system. In addition, [20] use a rec-

ommender system to predict student performance. Since

recommender systems often use a matrix factorization al-

gorithm, the RMSE is used to evaluate the closeness of

the two matrices. More complex cases have also been pro-

posed, with [11] integrating KT and IRT, and [26] com-

paring deep learning approaches to simple IRT.

However, unlike papers that provide such new math-

ematical models, this paper intends to examine the ef-

fectiveness of IRT itself from a different perspective as

slightly mentioned above using actual educational data

cases. To accomplish this, we use matrix decomposi-

tion (MD) perspective. [7] introduced matrix completion

(MC) and low-rank singular value decomposition (SVD)

to evaluate the difference between two matrices. By us-

ing SVD, we can obtain a low-rank matrix that is close to

the original matrix in the sense of Frobenius matrix norm.

The second challenge of this paper is to apply the method

to a number of actual examination data cases performed

at universities. By applying the matrix decomposition and

singular value decomposition methods to more than 40 ex-

amination data cases, ranging from small to large matrix

sizes, we were able to derive a very clear conclusion about

the effective approximated low-rank matrix that is equiv-

alent to the estimated item response matrix. Therefore,

the objective of the paper is to clarify the position of the

IRT performance in the sense of low-rank approximation

matrix equivalent to the estimated item response matrix

using a number of actual examination data sets.

2. Item response theory

2.1 Mathematical model

The standard IRT estimates proficiency parameters θi

(i = 1, . . . , n) and problem parameters aj , bj , cj (j =

1, . . . ,m) simultaneously by using the observed item re-

sponse matrix. Usually, this item response matrix (ma-

trix size is n×m) consists of 1/0 valued elements δij , with

the value 1 for the (i, j) element corresponding to the case

where examinee i solved question j correctly and the value

0 for the case where he/she solved it incorrectly.

Assume that the logistic probability function pij of ex-

aminee i correctly answering question j is expressed such

that

pij(θi; aj , bj , cj) = cj +
1− cj

1 + exp{−1.7aj(θi − bj)}
,

= 1− qij(θi; aj , bj , cj), (1)

where θi is called the ability for examinee i and aj , bj , cj

are called the discrimination parameter, difficulty param-

eter, and pseudo-guessing parameter, respectively; qij is

the probability that examinee i answers question j incor-

rectly.

2.2 Parameter estimation

Using the maximum likelihood estimation (MLE)

method, the maximum likelihood estimates θ̂i and âj , b̂j ,

ĉj for parameters θi and aj , bj , cj can be obtained by max-

imizing the likelihood function,

L =

n∏
i=1

m∏
j=1

(
p
δij
ij × q

1−δij
ij

)
. (2)

When only difficulty parameter bj is considered, such

the model is called the Rasch model. Usually, the two-

parameter model (cj = 0) is the standard, and we will

deal with this case below. Also, in terms of recommender

systems, we will refer to examinees as users and questions

as items.

If we denote parameters θi and aj , bj , cj together by Θ,

and the observed matrix by ∆ = (δij), then the estimation

process is expressed as follows.

∆ ; Θ̂. (3)

2.3 Estimated item response matrix

Applying the delta method to pij in equation (1) as a
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function of Θ̂, we can obtain δ̂ij which is a continuous

value in [0, 1]. This estimation process can be expressed

such that

Θ̂ ; ∆̂, (4)

and we call ∆̂ the estimated item response matrix. The

value δ̂ij is corresponding to the probability of correctly

answering the question using equation (1).

Considering such treatment, the δij value is extended

from a discrete value of 1/0 to a continuous value of [0, 1],

although δij takes values δij = 1 if the question is success-

fully answered and δij = 0 if it is not. We also deal with

the null value of the element (i, j), corresponding to the

case where the examinee i has not tackle problem j, or

the case that the response is unknown. How to deal with

such cases is explained in [9], [16], [17].

Once, estimates âj and b̂j for aj and bj are obtained,

we can perform estimation procedure for θi to each i in-

dependently. If there is a sequence of random variables

Xl satisfying
√
l[Xl − θi]

d−→N (0, σ2
i ), (5)

where θi and σ2
i are finite valued constants, N is a normal

distribution, and
d−→ denotes convergence in distribution,

then
√
l[g(Xl)− g(θi)]

d−→N (0, σ2
i · [g′(θi)]2), (6)

for any function g satisfying the property that g′(θ) exists

and is non-zero valued. According to this, and regarding

g as pij in equation (1), δ̂ij becomes optimal in the likeli-

hood sense. Therefore, ∆̂ is optimal in the mathematical

model assuming equation (1) and the parameter space of

Θ.

3. Singular value decomposition

3.1 Singular value decomposition procedure

Assuming that A = (aij) is a m×n matrix. Then, ATA

becomes a n × n symmetric matrix, and AAT becomes a

m × m symmetric matrix, where AT denotes the trans-

pose of A. Eigen values and eigen vectors to these two

matrices ATA and AAT are the same if they exist. We

denote the eigen values and eigen vectors to matrix ATA

as {ξ1, ξ2, · · · , ξn} and {v1,v2, · · · ,vn}. That is,

ATAvi = ξivi. (7)

Eigen values can be reordered such that ξ1 ≥ ξ2 ≥ · · · ≥
ξr > 0, ξr+1 = · · · = ξn = 0, where r is the rank of ATA.

Since ATA is symmetric, eigen vectors can be made as or-

thonormal system. That is, vi · vj = Iij , where Iij is the

indicator function; i.e., Iii = 1, and Iij = 0 (i ̸= j).

We make vector ui by ui = Avi/σi, (i ≥ r), where

σi =
√
ξi. In addition, if we produce matrices U = (ui)

and V = (vj), then A can be expressed as A = UΣV T,

or equivalently, A =
∑r

l=1 σlulv
T
l . Here, Σ is a diagonal

matrix using σi. This is the typical singular value decom-

position (SVD) (see [5], [18], [19]).

3.2 Generating the low-rank matrix

We define Ak such that

Ak =
k∑

l=1

σlulv
T
l , (8)

using the first k columns in the matrices of U and V .

This procedure generates the low-rank matrix Ak for A as

shown below.

It is interesting to remind the following theorem ([3]).

Theorem1 (Eckart-Young)

1) rank(Ak) = k

2) For any m× n matrix B, (rank(B) ≤ k),

||A−Ak||F = min
B,rank(B)≤k

||A−B||F = (
n∑

l=k+1

σ2
l )

1/2,

where || · ||F means the Frobenius matrix norm, i.e.,

||(aij)||F = (
∑

i,j |aij |2)1/2.
The theorem claims that Ak is best approximated to A

among all the matrices with rank of less than k+1 in the

sense of matrix norm.

3.3 Construction of the low-rank item response

matrix

When we regard A as the observed item response ma-

trix ∆, and we regard Ak as ∆k, we can construct the

low-rank item response matrix ∆k from ∆. When it is

desired to emphasize that ∆k is derived from SVD, it is

denoted as ∆SVD
k if necessary.

4. Matrix decomposition

4.1 Matrix decomposition procedure

SVD is a promising method to find an approximate ma-

trix that is close to a certain matrix in the sense of the ma-

trix norm. However, it requires that all the elements must

be occupied. Occasionally, one encounters cases where not

all elements of the observed response matrix are occupied.

In such cases, the matrix decomposition (MD) method

([12]) can be used; other methods, such as the imputation

method ([22]) or the matrix completion method ([7]) are

also used.

MD is similar to SVD. The target matrix R ∈ Rm×n

can be constructed from two matrices U ∈ Rm×k and
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V ∈ Rn×k, but the decomposed form has not the diago-

nal singular value matrix found in SVD. MD is described

as

R = UV T. (9)

Using the values of the non-null elements of A, we find U

and V so that

E =

m∑
i=1

n∑
j=1

Iij(aij − rij)
2 (10)

becomes small, where rij =
∑k

l=1 uilvjl, and Iij is the in-

dicator function such that Iij = 1 if aij is non-null and

Iij = 0 if aij is null. For stable computation, we use an-

other function with penalty terms such that

W =

m∑
i=1

n∑
j=1

Iij(aij − rij)
2 + ku

m∑
i=1

k∑
l=1

u2
il + kv

n∑
j=1

k∑
l=1

v2jl,

where, ku and kv are regularization factors to prevent

overfitting. To find the optimum value, we use the descent

method ([4], [14]). From appropriately set initial values

of u
(0)
il and v

(0)
jl , we proceed the following iterations until

|u(t+1)
il − u

(t)
il | and |v

(t+1)
jl − v

(t)
jl | are sufficiently small.

u
(t+1)
il ← u

(t)
il − λ

∂W

∂uil
|(t)

v
(t+1)
jl ← v

(t)
jl − λ

∂W

∂vjl
|(t), (11)

where, λ is the learning coefficient. This is a typical MD

procedure ([12]).

4.2 Construction of the low-rank item response

matrix

When only k vectors are used for the matrices U and

V , we denote R in such a case as Rk. As in the SVD case,

when we regard R as the observed item response matrix

∆, and we regard Rk as ∆k, we can construct the low-rank

item response matrix ∆k from ∆. When it is desired to

emphasize that ∆k is derived from MD, it is denoted as

∆MD
k if necessary.

5. Examination data analysis (complete

matrix treatment)

5.1 A typical example case of the observed item

response matrix

As a typical case for complete matrix treatment, we use

an observed item response matrix obtained from a mathe-

matics midterm examination given at a certain university.

The number of examinees n is 216 and the number of ques-

tions m is 31. There are no missing data in this matrix.

We name this example case A.

The figure on the left in Figure 1 shows the observed

item response matrix. In the figure, only the responses of

28 users are shown for clarity. This matrix is composed

of binary elements, with 1 for correct answers and 0 for

incorrect answers. The observed item response matrix is

denoted as ∆ = (δij).

図 1 Observed item response matrix and estimated item re-

sponse matrix.

5.2 Estimated item response matrix by using IRT

Applying the maximum likelihood estimation method

to this observed item response matrix ∆ yields the max-

imum likelihood estimate Θ̂ for the parameter Θ. Using

this estimated value Θ̂, the estimated item response ma-

trix ∆̂ can be reconstructed. As explained earlier, this ∆̂

is optimal in the sense of the likelihood principle. The

figure on the right in Figure 1 shows this ∆̂. Comparing

∆̂ and ∆ in Figure 1, we can roughly imagine the original

observed item response matrix ∆ from ∆̂. However, this

approximation appears to be inaccurate.

To see if this is correct, we will now use the Frobenius

matrix norm. Using this matrix norm, the proximity of

two equal-sized matrices A = (aij) and B = (bij) can be

expressed by the RMSE(A,B) such that

RMSE(A,B) =

√√√√ 1

nm

n∑
i=1

m∑
j=1

(aij − bij)2

=

√
1

nm
(||A−B||F )2. (12)

In this case, the RMSE(∆̂,∆) of the difference between

the observed item response matrix ∆ and the estimated

item response matrix ∆̂ is computed to be 0.3915. This

indicates that the distance between an observed δij and

its estimated value δ̂ij lies on average around 0.3915. In-

tuitively, this value does not seem small.
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5.3 Low-rank item response matrix

As described above, the estimated matrix ∆̂ by IRT

does not seem to accurately reproduce the observed re-

sponse matrix, although each estimate δ̂ij becomes opti-

mal in the likelihood sense under the defined parameter

space and likelihood function. Therefore, we investigate

how accurate ∆̂ is in terms of MD and SVD.

Applying the methods described in sections 3 and 4,

the low-rank item response matrices ∆SVD
k and ∆MD

k can

be computed. Table 1 shows the RMSE (∆SVD
k ,∆) and

RMSE(∆MD
k ,∆) in the cases of k = 1, . . . , 5, 10, 20, 31.

The table also shows the RMSE(∆̂,∆) corresponding to

IRT estimation.

The table shows, first, that the performance of SVD and

MD are almost the same. In other words, MD catches up

well with SVD. This means that MD can be applied as an

alternative method when SVD cannot be used directly.

Such a case may occur in the case of incomplete matrix,

especially when the matrices are sparse.

Next, we see that the RMSE(∆̂,∆) obtained by IRT lies

between the RMSE (∆1,∆) and RMSE(∆2,∆) in both

the SVD and MD cases. This is amazing in terms of ma-

trix approximation. The estimated response matrix ∆̂

using IRT would not exceed the accuracy obtained from

a k = 2 low-rank response matrix generated from the

observed item response ∆. In this example, this value

(k = 2) would be very small given that the rank of ob-

served matrix ∆ is 31. In other words, the reproducibility

of the observed item response matrix appears to be low

for IRT.

Such properties can also be seen in the pictures of the

low-rank response matrices. The figure on the left in Fig-

ure 2 shows ∆SVD
2 and that on the right ∆MD

2 . These are

very similar to ∆̂ in Figure 1.

表 1 RMSE of the difference of the two matrices between the

low-rank response matrix and the observed response ma-

trix
k RMSE(∆SVD

k ,∆) RMSE(∆MD
k ,∆) RMSE(∆̂,∆)

0.3915

1 0.4066 0.4067

2 0.3851 0.3854

3 0.3652 0.3656

4 0.3479 0.3485

5 0.3306 0.3314

10 0.2562 0.2583

20 0.1325 0.1400

31 0 0.0570

However, this is only the result of one case study. It

図 2 Low-rank matrices ∆SVD
2 and ∆MD

2 reproduced from the

oserved item response matrix.

would be necessary to collect other examination cases to

see if these properties hold true in other cases.

5.4 42 examination cases

To make sure that the above mentioned properties hold

true for other examination cases, 42 examination cases

were collected, including case A. For all examinations, an-

swers were given as discrete values of 1/0 (1 for correct

answers and 0 for incorrect answers).

Figure 3 shows the RMSE(∆̂,∆) for the 42 examina-

tion cases. In the figure, the case id shown on the hor-

izontal axis are arranged in ascending order of the mag-

nitude of the RMSE(∆̂,∆) shown on the vertical axis for

easy understanding. Also shown are the RMSE(∆SVD
k ,∆)

(k = 1, 2, 3) for each case id. Looking at the figure, we

see that RMSE(∆SVD
2 ,∆) < RMSE(∆̂,∆) is obtained in

all cases. This suggests that the effectiveness of IRT is

similar to that of a very low-rank approximation matrix.

図 3 RMSE(∆̂,∆) and RMSE(∆SVD
k ,∆) (k = 1, 2, 3) for 42

complete matrix using full element data.

However, this is the result when all the element data of

∆ are used, i.e., when the estimation is performed with

training data only. In this case, the estimated values δ̂ij

may be overfitting values. In order to clarify whether

the estimates obtained with IRT are really inaccurate, we
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next investigate the prediction accuracy in the case of IRT,

SVD and MD using the training data and test data.

6. RMSE for test data using incomplete

matrix treatment

We, here, create two matrices S and T for the training

and test data from the observed item response matrix ∆,

respectively. We denote the corresponding estimated ma-

trices for S and T as S̃ and T̃ in IRT. Similarly, we denote

the low-rank matrices with rank k for S and T as S̃SVD
k

and T̃ SVD
k in SVD, and as S̃MD

k and T̃MD
k in MD.

6.1 Case A

Using examination example case A in section 5, we com-

pute the RMSE of the training and test data. To do this,

10% of the elements are randomly selected from the orig-

inal matrix as test data, and the remaining 90% elements

are used as the training data. Then, the RMSE(S̃, S) for

the training data and RMSE(T̃ , T ) for the test data are

obtained. Since there may be fluctuations of the RMSE

due to the selection of test data, this is repeated (boot-

strapped) 10 times and the average RMSE is expressed as

µ(RMSE).

Figure 4 shows the RMSE for the training test data

using MD and SVD. Circles denote the RMSE(S̃SVD
k , S)

and RMSE(T̃ SVD
k , T ) for each data selection, and similarly

triangles denote the RMSE(S̃MD
k , S) and RMSE(T̃MD

k , T ).

For reference, the µ(RMSE(S̃, S)) (mean value of the

RMSE(S̃, S)) and the µ(RMSE(T̃ , T )) (mean value of the

RMSE(T̃ , T )) using 10 bootstrapped cases reproduced by

IRT are shown with horizontal dotted lines. In the figure,

the cases of k = 1, . . . , 10 for MD and SVD are presented.

Looking at the figure, as k increases, the RMSE of

the training data shows monotonically decreasing char-

acteristics as expected. Moreover, the range of varia-

tion in RMSE among the 10 bootstrapped data sets is

also small. As explained earlier, the RMSE(S̃k, S) with

training data is found to lie between RMSE(S̃SVD
1 , S) and

RMSE(S̃SVD
2 , S). This property is also found in the MD

case.

However, for the test data, the RMSE(T̃ SVD
k , T ) curves

as a function of k were found to exhibit very different

curve shape patterns. The RMSE follows a V -shaped

curve (first decreasing and later increasing with increasing

k). Such V -shaped curves due to model complexity are

well known (e.g., [8]). In addition, the RMSE varies to

some extent among 10 bootstrapped data cases. Surpris-

ingly, near the bottom of the V -shaped curve, the values

of the RMSE(T̃ SVD
k , T ) and RMSE(T̃MD

k , T ) for the boot-

strapped 10 cases are located near the mean value of the

RMSE(T̃ , T ).

Table 2 shows the mean values µ(RMSE(T̃ SVD
k , T )) and

µ(RMSE(T̃MD
k , T )) as well as the mean values of the

µ(RMSE(T̃ , T ) using 10 bootstrapped cases, where k =

1, . . . , 10. In the table, boldface type denotes the smallest

value among the various k values. For MD, the smallest

RMSE(T̃MD
k , T ) is obtained when k = 3, and for SVD, the

smallest RMSE(T̃ SVD
k , T ) is obtained when k = 5. It is

considered that the RMSE(T̃ SVD
k , T ) or RMSE(T̃MD

k , T )

would not be smaller than a certain value, unlike the

monotonically decreasing behavior of the RMSE(S̃SVD
k , S)

or RMSE(S̃MD
k , S). In this case, this lower limit is located

in the neighborhood of the RMSE(S̃, S). This means that

the accuracy (reliability) of mimicking the original data ∆

of IRT in terms of prediction can be explained by a very

low-rank matrix decomposed by SVD or MD.

図 4 RMSE for the test data and the training data via MD and

SVD (case A).

表 2 Smallest mean values of 10 bootstrapped RMSE for the

test data to each ∆k

k µ(RMSE(T̃ SVD
k , T )) µ(RMSE(T̃MD

k , T )) RMSE(∆̂,∆)

0.4056

1 0.4168 0.4160

2 0.4085 0.4095

3 0.4026 0.4053

4 0.4025 0.4059

5 0.3985 0.4096

6 0.4009 0.4126

7 0.4019 0.4256

8 0.4025 0.4326

9 0.4048 0.4403

10 0.4052 0.4556

Recall that the RMSE for IRT lies between the k = 1

RMSE and the k = 2 RMSE for MD or SVD with full

c⃝ 1959 Information Processing Society of Japan 6



情報処理学会研究報告
IPSJ SIG Technical Report

matrix data, as indicated in Table 1. This superficial re-

sult seems to indicate that IRT’s ability to represent the

observed item response matrix is weak. This is because

the prediction ability using ∆̂ is similar to that using a

very low-rank approximation matrix, although the rank

of matrix ∆ is the same as the minimum number of users

and items, which in this case is 31.

However, as seen above, the RMSE in the test case is

also close to the RMSE of the best reconstructed low-rank

matrix (rank lower than 5) using the matrix decomposi-

tion. This tells us that the mathematical model of IRT

(two-parameter logistic model) is well defined to represent

the actual examination case (case A). However, this char-

acteristic could be found only in certain cases. Therefore,

we next investigate whether such a characteristic applies

to other examination cases, using various data cases.

6.2 8 examination cases among 42 cases

From 42 data cases, we picked 8 cases, including case

A, to verify whether the RMSE of the test cases in IRT is

close to the RMSE of the low-rank matrix in SVD. Table

3 shows µ(RMSE(T̃ SVD
k opt, T )) and µ(RMSE(T̃ , T )), where

k opt means k for which µ(RMSE(T̃ SVD
k opt, T )) is minimum

when k = 1, . . . , kmax.

Looking at the table, in almost all cases, we see that

µ(RMSE(T̃ SVD
k opt, T )) is close to µ(RMSE(T̃ , T )) and k opt

is very small. The exception is case B (case id is 30), where

the matrix size is n = 1101,m = 84, and k opt = 16.

In this case, the number of examinee is large to some

extent and µ(RMSE(T̃ SVD
k opt, T )) is clearly smaller than

µ(RMSE(T̃ , T )). Thus, we next consider the relation be-

tween the RMSE(T̃ SVD
k opt, T ) and RMSE(T̃ , T ) in case B.

表 3 Mean values of 10 bootstrapped RMSE for the test data

to 8 data cases
case id µ(RMSE(T̃ SVD

k opt, T )) k opt µ(RMSE(T̃ , T ))

5 0.2935 1 0.2908

10 0.3547 1 0.3591

15 0.3457 1 0.3344

20 0.3801 1 0.3726

25 0.3701 5 0.3789

30 0.3442 16 0.3771

35 0.3982 2 0.3964

40 0.4053 3 0.4068

Figure 5 shows the RMSE for the training data and the

test data using SVD. Circles indicate the RMSE(S̃SVD
k , S)

and RMSE(T̃ SVD
k , T ) for each data selection. For refer-

ence, the µ(RMSE(S̃, S)) (mean value of the RMSE(S̃, S))

and the µ(RMSE(T̃ , T )) (mean value of the RMSE(T̃ , T ))

using 10 cases reproduced by IRT are shown using hori-

zontal dotted lines. In the figure, cases of k = 1, . . . , 30

for SVD are illustrated.

As shown in the figure, the mean value µ(RMSE(T̃ , T ))

using 10 bootstrapped cases by IRT lies between the

RMSE(T̃ SVD
1 , T ) and RMSE(T̃ SVD

2 , T ). In addition,

µ(RMSE(S̃, S)) lies between the RMSE(S̃SVD
1 , S) and

RMSE (S̃SVD
2 , S). This property is the same as the fact

that the RMSE(S̃, S) using the training data lies between

the values of RMSE(S̃SVD
1 , S) and RMSE(S̃SVD

2 , S) for one

case. Such a result may be realized by chance, but the

property that the µ(RMSE(T̃ SVD
k , T )) is not much differ-

ent from the µ(RMSE(T̃ , T )) remains the same as in other

7 cases.

In other words, the potential ability of IRT to mimic

the observed response matrix ∆ is found to be equivalent

to the ability of the low-rank approximation matrix gen-

erated by matrix decomposition to mimic the observed re-

sponse matrix, not only in the full training data use study

but also in the training and test data use study. Although

the rank of the low-rank approximation response matrix

by matrix decomposition corresponding to ∆̂ is extremely

smaller than the rank of the observed response matrix ∆,

the predictive ability of IRT seems to be high enough since

the RMSE(T̃ SVD
k opt, T ) is almost equal to µ(RMSE(T̃ , T )).

In other words, if the size of the item response matrix

is moderate, i.e., less than 1000 users and less than 100

items, it would be difficult to obtain more information

than IRT produces from the observed item response ma-

trix alone using the matrix decomposition method.

図 5 RMSE for the test data and the training data via MD and

SVD (case30).

7. Concluding remarks

This paper has investigated the predictive effectiveness

of item response theory itself from matrix decomposition

perspective.
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If the observed item response matrix is given, the maxi-

mum likelihood estimates for parameters in item response

theory can be estimated, and the estimated item response

matrix is also reconstructed using the estimates. Then,

the difference between the observed and estimated item

response matrices can be determined in the sense of matrix

norm. Matrix decomposition and singular value decom-

position methods can generate a low-rank approximation

matrix from the observed item response matrix, and the

difference between the observed and the generated low-

rank matrix can be measured in the sense matrix norm.

The effectiveness of item response theory may be eval-

uated by comparing the two matrices between the esti-

mated item response matrix obtained from the item re-

sponse theory and the low-rank approximation matrix ob-

tained from matrix decomposition or singular value de-

composition.

Applying item response theory, matrix decomposition,

and singular value decomposition to many actual exam-

ination data, it is found that the rank of the generated

low-rank approximation matrix that is equivalent to the

estimated item response matrix is very low. However, the

predictive ability of IRT seems to be high enough since

the minimum root mean squared errors for test data us-

ing matrix decomposition and singular value decomposi-

tion methods are almost equal to the root mean squared

error from item response theory.
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