
IPSJ SIG Technical Report

Some Polynomial-Time Solvable Instances of
3-PARTITION

ByunghoMin1,a) Shuji Kijima1,b)

Abstract:
The 3-PARTITION problem, which is NP-complete, asks whether it is possible to divide given 3m numbers into m
triples whose sums are the same. We refer to such a triple as the “candidate triple”. We prove that the 3-PARTITION
problem is solved by deterministic algorithm in polynomial time if all its given numbers are included in two or less
candidate triples.

Keywords: NP-complete problem, 3-PARTITION problem

1. Introduction
Definition 1.1 (3-PARTITION problem). cf.[1]

INSTANCE : A set A of 3m elements, a bound B ∈ Z, and a
“size” s(a) ∈ Z for each a ∈ A, such that

∑
a∈A s(a) = mB.

QUESTION : Is it feasible to separate A into m disjoint triples,
such that every sum of triple is B.

We will say “A is 3-partitioned” if it is possible to separate
A into m disjoint triples, such that every sum of triple is B. We
name such a triple candidate triples.

The number of triples of A is
(

3m
3

)
= O(m3). Each triple can

be checked whether it is a candidate triple in polynomial time.
Therefore, the computing all candidate triples just needs polyno-
mial time of |A|.

Garey and Johnson [1] proved that 3-PARTITION problem is
NP-complete. Hulett et al. [2] proved that this problem is NP-
complete even when all elements of A have pairwise distinct
sizes. It is challenging problem whether this problem can be
solved in polynomial time.

In this note we will show that this problem is solved in polyno-
mial time with the restriction on the maximum number of candi-
date triples that each element of A is included in.
Theorem 1.2. If every element of A is included in two or
less candidate triples, then we can determine whether or not
f3partition(A, B) = Y in polynomial time of |A|.

2. The proof of Theorem 1.2
For simplicity, we define 3-PARTITION function.

Definition 2.1 (3-PARTITION Function). The 3-PARTITION
function is the function f3partition : {A, B} → {Y,N} where
f3partition(A, B) is “Y” if A can be 3-partitioned, and if not
f3partition(A, B) is “N”.

1 Kyushu University, Motooka, Fukuoka 819–0395, Japan
a) mmin159ho12@naver.com
b) kijima@inf.kyushu-u.ac.jp

To prove the Theorem 1.2, we make several lemmas.
Lemma 2.2. If there is a ∈ A which is not included in any candi-
date triple, then f3partition(A, B) = N.

Proof. If f3partition(A, B) = Y , then all elements of A should be
included in at least one candidate triples. This contradict with
the assumption that there is a ∈ A which is not included in any
candidate triples. �

Lemma 2.3. If there is a ∈ A which is included in just one
candidate triple {a, a′, a′′}, then f3partition(A, B) = f3partition(A −
{a, a′, a′′}, B).

Proof. If f3partition(A − {a, a′, a′′}, B) = Y , then f3partition(A, B) =

Y because only we need to do is add {a, a′, a′′} which is a can-
didate triple of A to A − {a, a′, a′′}. If f3partition(A, B) = Y ,
then f3partition(A − {a, a′, a′′}, B) = Y because 3-PARTITION of
A should include {a, a′, a′′} which is sole candidate triple for a.
Thus, f3partition(A, B) = f3partition(A − {a, a′, a′′}, B). �

Lemma 2.4. Supposed that A consists of elements with distinct
sizes, and each element in A is included in exactly two candidate
triples. Then we can determine whether or not f3partition(A, B) = Y
in polynomial time of |A|.

Proof. First, we convert this 3-PARTITION instance (A, B) into
the graph G = (V(G), E(G)). V(G) is the set of all candidate
triples of A. E(G) is the set of all pairs of two candidate triples
that have same element of A. Because all elements in A have
pairwise distinct sizes, the degree of each vertex is three.

It is easy to find out whether or not G is a bipartite graph in
polynomial time of |A|.

Then, we show that f3partition(A, B) = Y if the G is bipartite.
|V1| = |V2| = m because the degrees of the all vertices are same as
three. There are 3|V1| = 3m edges between V1 and V2. Each edge
means just one element of A and no more than two edges mean
same element. Every element of A has corresponding edge of
G. Then, we can claim that the set R1 of candidate triples that is

© 2021 Information Processing Society of Japan 1

IPSJ SIG Technical Report

corresponding to V1 is 3-PARTITION of A because all elements
of A are included in at least one candidate triple of R1 and all
candidate triples of R1 are pairwise distinct. Therefore, we can
conclude that f3partition(A, B) = Y if the G is bipartite.

Next, we check that f3partition(A, B) = N if the G is not bipartite.
G has odd cycle because it is not bipartite. By using this fact, we
will prove that G do not have “Exact Vertex Cover (EVC)” that
means the subset of V which each edge in G is at just one vertex
in. Let C = vc0vc1vc2 · · · vc(2k)vc0(k ∈ N) is the one of the odd cycle
in G. If we choose k or less vertices from C as members of EVC,
then there exists at least one edge in C which do not join any ver-
tex of EVC. So, we should select more than k vertices from C.
But, if we pick more than k vertices from C as members of EVC,
then there exists at least one edge in C which join two vertex of
EVC. Hence, we cannot obtain EVC for G, which means that
(A, B) cannot be 3-partitioned. We can know f3partition(A, B) = N
if the G is not bipartite.

Finally, we can check whether or not the graph G correspond-
ing to A is bipartite graph in the polynomial time of |A| and we
get the value of f3partition(A, B) from it. �

Lemma 2.5. If all elements of A are included in exactly two can-
didate triples, then there are at most two elements whose sizes are
the same.

Proof. Supposed that as1, as2, · · · , ask ∈ A (k > 2) have same
size.

If there are ai, a j ∈ A, such that {as1, ai, a j} ∈ C, then ai

and a j have at least k candidate triples because {as2, ai, a j}, · · ·,
{ask, ai, a j} are also candidate triples. This is contradictory to the
supposition of lemma.

If there are ap ∈ A, such that {as1, as2, ap} ∈ C, then ap has at
least k(k − 1)/2 ≥ 3 candidate triples because {as1, as3, ap}, · · ·,
{as(k−1), ak, ap} are also candidate triples. This is contradictory to
the supposition of lemma.

If k = 3 and {as1, as2, as3} ∈ C, then each of them have a can-
didate triple {ai, a j, ak} and need one more candidate triple. But,
it is impossible for the identical reason that stated in the former
paragraph. Thus, such a case do not exist.

Finally, if k > 3 and {as1, as2, as3} ∈ C, then as1 has at least
k(k − 1)(k − 2)/6 ≥ 3 candidate triples because {as1, as2, as4}, · · ·,
{as1, as(k−1), ask} are also candidate triples. This is contradictory
to the supposition of lemma.

Consequentially, there are no more than two elements whose
sizes are equal to each other if each element in A has just two
candidate triples.

�

Lemma 2.6. If every element of A is included in exactly
two candidate triples, then we can determine whether or not
f3partition(A, B) = Y in polynomial time of |A|.

Proof. Three or more elements of A cannot have same size by
Lemma 2.5.

Suppose that there are two elements ai, a j ∈ A have same
size. Let C1 and C2 are the candidate triples that ai ∈ C1,C2.
We set C1 = {ai, ap1, aq1} and C2 = {ai, ap2, aq2}. If s(ap1) is
equal to s(ap2), then aq1 have four candidate triples: {ai, ap1, aq1},

{ai, ap2, aq1}, {a j, ap1, aq1}, {a j, ap2, aq1}. It is contradictory with
the assumption that all element are included in just two candi-
date triples. This is same to all other combinations: {ap1, aq2},
{aq1, ap2} and {aq1, aq2}. Thus, s(ap1) or s(aq1) are not equal to
s(ap2) or s(aq2).

For six elements ai, a j, ap1, aq1, ap2, aq2, each element has two
candidate triples from C1 = {ai, ap1, aq1}, C2 = {ai, ap2, aq2},
C3 = {a j, ap1, aq1} and C4 = {a j, ap2, aq2}. Each triple of C1,
C2, C3 and C4 has three elements from ai, a j, ap1, aq1, ap2 and
aq2. So, the elements of {ai, a j, ap1, aq1, ap2, aq2} are detached
from the other elements of A. {ai, a j, ap1, aq1, ap2, aq2} can be 3-
partitioned by C1 and C4 (or C2 and C3). Thus, we can know
that f3partition(A, B) = f3partition(A − {ai, a j, ap1, aq1, ap2, aq2}, B)
and the each element of A − {ai, a j, ap1, aq1, ap2, aq2} also has ex-
actly two candidate triples. By this process, we can eliminate the
elements that have same sizes from A without effecting the value
of f3partition(A, B).

We repeat aforementioned process until A do not have two el-
ements whose size are same. This end with the polynomial time
of |A| since the process can be done in the polynomial time and
whenever the process ends the size of A diminish by 6.

Finally, the rest elements of A have pairwise distinct sizes. So,
f3partition(A, B) can be determined in polynomial time of |A| by
Lemma 2.4. �

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Set A1 := A. Supposed that there is
a ∈ A1 which is included in just one candidate triple {a, a′, a′′}
of A1. Then we make A1 := A1 − {a, a′, a′′} without any influence
on the value of f3partition(A1, B) by Lemma 2.3. Next, we com-
pute all candidate triples of new A1. If there is ai ∈ A1 which is
included in just one candidate triple of A1, then we do same thing.
We repeat this process until A1 become ∅, one or more elements
of A1 are not included in any candidate triple or all elements of
A1 are included in just two candidate triples. This repetition must
be ended in the polynomial time of |A| because the computation
for each process is polynomial and the number of repetition is at
most |A|/3.

If A1 become ∅, we can claim f3partition(A, B) = Y .
If there is a ∈ A1 which is not included in any candidate triple,

then we can decide f3partition(A, B) = N by the Lemma 2.2.
If each element of A1 has exactly two candidate triples, then

we can determine whether f3partition(A, B) = Y in the polynomial
time of |A1| which is also polynomial to |A| by the Lemma 2.6.

Therefore, we can determine whether or not f3partition(A, B) =

Y in polynomial time of |A| if each element of A is included in
two or less candidate triples. �

References
[1] Garey, M. R. and Johnson, D. S.: Complexity results for multiproces-

sor scheduling under resource constraints, SIAM Journal on Comput-
ing, Vol.4, No.4, pp.397–411 (1975).

[2] Hulett, H., Will, T. G. and Woeginger, G. J.: Multigraph realizations
of degree sequences: Maximization is easy, minimization is hard, Op-
erations Research Letters, Vol.36, No.5, pp.594–596 (2008).

© 2021 Information Processing Society of Japan

