
 情報処理学会研究報告

IPSJ SIG Technical Report

○c 2020 Information Processing Society of Japan

1

Construction of An Environment of Edging System for IoT devices

Tao WANG1 Yaokai FENG2 Kouichi SAKURAI2

Abstract：In recent years, as the application of the IoT(Internet of Things) has become more and
more important in people's lives, edge computing has gradually received attention due to its
superiority. MQTT (Message Queuing Telemetry Transport), as an information transmission
protocol in IoT, has also been widely used in edge computing. In this paper, we will introduce the
MQTT and build a simple Edging system for IoT devices. There are many systems (or application
software) which implement MQTT protocol communication, but because each system has
advantages and disadvantages, none of them can occupy a dominant position. The specifications
and implementation of systems are also different. That caused great difficulties for beginner. Our
study analyzes and compares commonly used application systems. And narrate how to build a
system that fits needs. Guide beginners to better choose system which fits for them. We believe
that will brings assistance to the people who are interested in relevant research. This report is the
first step in our research.

Keywords： Internet of Things, MQTT, Mosquitto, EMQ, Edge-computing, Information Security

1. Introduction

 The IoT is an emerging communications paradigm
in which devices serve as objects or “things” that have
the ability to sense their environment, connect with
each other, and exchange data over the Internet. IoT
(Internet of Things) era has been coming up and our
world will become more convenient and more efficient.
According to the Cisco Visual Network Index, mobile
data traffic will grow at a compound annual growth rate
of 47 percent from 2016 to 2021, reaching 49 exabytes
per month by 2021 [1]. And at the same time,
Innovations in the area of digital things, Information
Communication Technology and IPV6 (Internet
protocol) are enabling rapid deployment of Internet of
Things (IoT) around the globe. It is estimated that
trillions of IoT devices are going to be deployed in next
five years [2]. More and more companies launch their
own IoT cloud platforms. Typical IoT cloud platforms
include AWS IoT, IBM Watson, OneNet, etc.

Figure 1 IBM Communication Protocols

	
1 九州大学システム情報科学府

Graduate School of Information Science and Electrical Engineering, Kyushu

University

2 九州大学大学院システム情報科学研究院

Faculty of Information Science and Electrical Engineering, Kyushu

University

Figure 2 OneNet Communication Protocols

Although there are so many IoT cloud platforms, all
current IoT cloud platforms have common limitations: 	
1) The current cloud platforms only provide data
communication protocols specified by their companies.
For example, IBM Watson is like this(Figure1);
But OneNet looks like this (Figure 2).	
2） The data encryption methods of these cloud
platforms are different. Many companies need to burn
the authentication files provided by the corresponding
platforms for encrypted transmission. They cannot use
custom encryption algorithms.	
3）If you want to DIY upper-level applications based
on remote node data collected by the platform. Many	
platforms provide APIs for pushing node data for third-
party applications, such as OneNet's data push service.
However, the data information of the first push is not
complete enough to obtain specific user information.
Secondly, the third-party application is regarded by
OneNet as a user in the platform and has no right to
obtain information of other users. At the same time, the
API provided by the cloud platform to provide data
push services for third-party applications only
represents the agreement of the cloud platform
manufacturer, and is not a standard. Third-party

 情報処理学会研究報告

IPSJ SIG Technical Report

○c 2020 Information Processing Society of Japan

2

applications rely heavily on the cloud platform. Once
the interface of the data push service changes, the third-
party application will have to be modified. Finally, the
node data must first be uploaded to a cloud platform
and then forwarded to the server of the third-party
application.
These disadvantages may be tolerable for ordinary
users, but for researchers, it is necessary to expand the
use rights as much as possible, so a private IoT cloud
platform needs to be built. In this paper, we mainly
introduce the MQTT protocol and build an edge system
for IoT devices under the environment of personal
computer.

2. MQTT and Our Study

2.1 The Purpose of this study
 There are many systems (or application software)
which implement MQTT protocol communication, but
because each system has advantages and disadvantages,
none of them can occupy a dominant position. The
specifications and implementation of systems are also
different [10]. That caused great difficulties for
beginner.
 Our study analyzes and compares commonly used
application systems which implement MQTT protocol.
And narrate how to build a system that fits needs.
Guide beginners to better choose system which fits for
them. We believe that will brings assistance to the
people who are interested in relevant research. The goal
of this article is to establish an MQTT simulation
system, based on which to conduct further security
analysis and attack detection. Our study analyzes and
compares commonly used application system which
implement MQTT protocol. And narrate how to build
a system that fits needs. Guide beginners to better
choose system which fits for them.

2.2 Introduction of MQTT
 Internet of Things (IoT) devices must be connected
to the Internet. By connecting to the Internet, devices
can collaborate with each other and with back-end
services. Message Queue Telemetry Transport (MQTT)
protocol is an application layer protocol designed for
resource-constrained devices [7].
 MQTT was originally invented and developed by
IBM in the late 1990s [8]. Its original purpose was to
link sensors on oil pipelines with satellites. As the
name suggests, it is a messaging protocol that supports
asynchronous communication between parties.
Asynchronous messaging protocols separate message
senders from receivers in space and time, so they can
scale in unreliable network environments. Although it
is called message queue telemetry transmission, it has
nothing to do with message queues. Instead, it uses a
publish and subscribe model. At the end of 2014, it

officially became an OASIS open standard and was
supported (using multiple open source
implementations) in some popular programming
languages.

2.3 Publish and subscribe models
 The MQTT protocol defines two entity types in
the network: a message broker and some clients. A
proxy is a server that receives all messages from clients
and then routes those messages to the relevant target
clients. A client is anything that can interact with a
broker to send and receive messages. Clients can be IoT
sensors in the field, or applications that process IoT
data in the data center. It also called Publish/Subscribe
(pub/sub) messaging systems [10].
1) The client connects to the proxy. It can subscribe

to any message "topic" in the broker. This
connection can be a simple TCP / IP connection or
an encrypted TLS connection for sending
sensitive messages.

2) The client publishes messages within a certain
topic range by sending messages and topics to the
agent.

3） The broker then forwards the message to all
clients that subscribe to the topic.
 Because MQTT messages are organized by topic,
application developers have the flexibility to specify
that certain clients can only interact with certain
messages. For example (Figure 3), sensors will publish
readings within the “sensor_data” topic and subscribe
to the “config_change” topic. Data processing
applications that save sensor data to a back-end
database subscribe to the "sensor_data" topic. The
management console application can receive
commands from the system administrator to adjust
sensor configuration, such as sensitivity and sampling
frequency, and post these changes to the
“config_change” topic [11].

Figure 3 Framework of MQTT

2.4 MQTT main features
 The MQTT protocol is a protocol designed to
communicate with remote sensors and control
equipment in low-bandwidth, unreliable networks. It
has the following main features:

 情報処理学会研究報告

IPSJ SIG Technical Report

○c 2020 Information Processing Society of Japan

3

(1) Use the publish / subscribe message mode to
provide one-to-many message publishing and decouple
applications.
This is very similar to XMPP, but the information
redundancy of MQTT is much smaller than XMPP
because XMPP uses XML format text to pass data [12].
(2) Shielded message transmission.
(3) Use TCP / IP to provide network connection.
The mainstream MQTT is based on TCP connection for
data push, but there is also a UDP-based version called
MQTT-SN. Because these two versions are based on
different connection methods, the advantages and
disadvantages are naturally different.
(4) There are three types of message publishing service
quality:
"At most once", message release is completely
dependent on the underlying TCP / IP network.
Message loss or duplication can occur. This level can
be used in the following situations. Environmental
sensor data. It does not matter if a reading record is lost,
because there will be a second transmission in the near
future. This method is mainly for general APP push. If
your smart device is not connected to the network when
the message is pushed, the push has not been received
in the past, and it will not be received again when
connected to the network.
"At least once", make sure the message arrives, but
message duplication may occur.
"Only once", make sure the message arrives once. This
level can be used in some demanding billing systems.
In billing systems, duplicate or lost messages can lead
to incorrect results. This highest quality message
publishing service can also be used for the push of
instant messaging apps, ensuring that users receive it
only once [10].
(5) Small transmission, small overhead (fixed length
header is 2 bytes), protocol exchange is minimized to
reduce network traffic.
This is why the introduction said that it is very suitable
for "in the field of Internet of Things, communication
between sensors and servers, and information
collection." It is necessary to know that the computing
capacity and bandwidth of embedded devices are
relatively weak. It is suitable to use this protocol to pass
messages.
(6) Use the Last Will and Testament features to notify
the parties concerned about the client's abnormal
interruption mechanism.
Last Will: the last words mechanism, used to notify
other devices under the same topic that the device that
sent the last words has been disconnected.
Testament: Testament mechanism, similar in function
to Last Will.

2.5 MQTT protocol packet structure
In the MQTT protocol, an MQTT data packet is
composed of three parts: a fixed header, a variable

header, and a payload. The MQTT packet structure is
as follows:
(1) Fixed header. It exists in all MQTT data packets and
indicates the packet type and the packet class identifier
of the data packet.
(2) Variable header. It exists in some MQTT data
packets. The type of the data packet determines
whether the variable header exists and its specific
content.
(3) Message body (Payload). It exists in some MQTT
data packets, indicating the specific content received
by the client [10].

2.6 The advantage of MQTT
For IoT developers, MQTT is the perfect balance
between lightweight and network protocol flexibility.
The lightweight protocol means that it can be
implemented on strictly restricted device hardware or
on networks with high latency or limited bandwidth.
The flexibility of MQTT enables it to support multiple
application scenarios for IoT devices and services [3].
 At the same time, by comparing other protocols, we
find that MQTT is more suitable for the Internet of
Things than other existing protocols.
 First, the most widely used HTTP protocol does not
perform well in the Internet of Things. We assume that
IoT devices are connected to Web services. By
connecting to a web service, the device data is sent as
an HTTP request, and updates are received from the
system as an HTTP response. However, due to some
characteristics of HTTP itself, many defects are
generated.
 HTTP is a synchronous protocol. Therefore, the
client waits for a response from the server. Web
browsers can meet this requirement, but at the cost of
scalability. In the IoT world, synchronous
communication has problems due to the large number
of devices and the network is usually unreliable or has
high latency. So far, asynchronous messaging protocols
are more suitable for IoT applications. With
asynchronous communication, the network can
determine the best path and time for the sensor to send
measurements and pass that data to the target device or
service.
And it is one-way. The client must initiate a connection.
Devices and sensors are often clients in IoT
applications. That is, no device or sensor can passively
receive commands from the network.
HTTP is a one-to-one protocol. The client sends a
request and the server responds. Therefore, it is
difficult and expensive to broadcast a message to every
device on the network. But in the Internet of Things,
the number of devices is extremely large. At the same
time, the Iot is heterogeneous, for IoT due to multitude
of heterogeneous devices, storing and managing the
certificates and key exchanges for every session is
cumbersome and also SSL/TLS suffers from attacks
such as BEAST, CRIME, RC4, Heartbleed, etc. Thus a

 情報処理学会研究報告

IPSJ SIG Technical Report

○c 2020 Information Processing Society of Japan

4

scalable, lightweight and robust security mechanism is
required for MQTT and its variants for deploying in
IoT [5]. This leads to the fact that HTTPS cannot be
applied to the IoT.
HTTP is a heavyweight protocol with many headers
and rules. It is not suitable for networks with limited
bandwidth.
 The most commonly used messaging protocol in
enterprise middleware systems is AMQP (Advanced
Message Queuing Protocol) [3]. But in these high-
performance environments, computing power and
network latency are usually not a problem. AMQP is
designed to provide reliability and interoperability for
enterprise applications and has a rich feature set, but is
not suitable for resource-constrained IoT applications.
 In addition to AMQP, there are other popular
messaging protocols. One example is Extensible
Messaging and Presence Protocol (XMPP). XMPP is a
peer-to-peer instant messaging (IM) protocol that
focuses on features that support IM use cases, such as
status and media attachments. Compared with MQTT,
XMPP requires more resources on both the device and
the network.
 Compared with the existing protocols, MQTT has
many of the advantages mentioned above, and has been
applied to IoT actual systems. With the popularity of
the IoT, MQTT will become more common in the
future, and network attack detection and defense in
MQTT-based IoT environments will more and more
important, there are quite a few researchers involved in
the research of MQTT security, Y. Upadhyay et.al.
propose using ACL (access control list) to provide
encryption method for the data and finally monitoring
those data on webpage or any network devices [4]. To
achieve the secure transmission of information in the
MQTT system. And M. Singh et.al. propose a secure
version of MQTT and MQTT-SN protocols (SMQTT
and SMQTT-SN) in which security feature is
augmented to the existing MQTT protocol based on
Key/Ciphertext Policy-Attribute Based Encryption
(KP/CP-ABE) using lightweight Elliptic Curve
Cryptography [5].

3 Construction of a Simple System

3.1 Part of Broker:
Apache-Apollo: A proxy server developed on the basis
of ActiveMQ that supports exchanging messages
between heterogeneous and distributed software
applications using several messaging mechanisms [9],
and also can support multiple protocols such as STOMP,
AMQP, MQTT, Openwire, SSL, and WebSockets.
Apollo provides back-end management pages to
facilitate developer management and debugging.
EMQ: EMQ 2.0, known as a million-level open source
MQTT message server. It is based on the Erlang / OTP

language platform and supports large-scale
connections and distributed clusters. It is an open
source MQTT message server with a publish-subscribe
model.
Mosquitto: An open source message broker software
that implements the MQTT v3.1 message push
protocol, providing a lightweight, push / publishable
message push mode [14].
Since Apache-Apollo has not been updated for a long
time, in this article, we only introduce the installation
of EMQ and Mosquitto in Mac.

3.2 Mosquitto installation：
 Step1: Download the code from [13].
 Step2: Because it is under the mac environment, you
need to install brew. Open terminal and enter command
(Figure 4):

Figure 4 Download Command

Figure 5 Installation Success

In this picture (Figure 5), installation successful, and
next we can install the Mosquitto.
Step 3：
Input the commend: brew install mosquito. (Figure 6)

Figure 6 Install Mosquito

 情報処理学会研究報告

IPSJ SIG Technical Report

○c 2020 Information Processing Society of Japan

5

And the Terminal show the mosquito is installed. Now
we try to verify it.

Figure 7 Publisher and Subscriber

We open two new Terminal and input the commend,
make one to be a publisher and other is subscriber
(Figure 7).

Figure 8 Results

And then we can see the result, the message is showed
in subscriber (Figure 8).

3.3 EMQ installation
Step1: In the step, it also need to install the brew.
Step2: Add the tag for EMQ X [17](Figure 9).

Figure 9 Add the Tag

Step3: Input the commend: brew install emqx (Figure
10)

Figure 10 Start EMQ

Step3: Next input the commend: emqx start, emqx_ctl
status to run emqx (Figure 10).
Step4: http://127.0.0.1:18083 to use EMQ X's web
management control interface. The default login is
admin and the password is public [15].

Figure 11 EMQ Register

Figure 12 Interface of EMQ

And from the web, you can check how many
connections there are and how many client there are.
For client side, we use MQTTBox that is a cross
platform application available on Chrome, Linux,
MAC, Web and Windows [16] (Figure 13).

 情報処理学会研究報告

IPSJ SIG Technical Report

○c 2020 Information Processing Society of Japan

6

Figure 13 Interface of MQTTBox

4 Evaluation
 For mosquito, that is an MQTT open source agent also
supports the CoAP protocol. And have strong data
processing support, you can add modules
independently (for example: user authentication or
server data storage). However, it's not intuitive enough
to display, it not has management interface like EMQ.
 For EMQ, 1. Simple deployment; 2. Support cluster
deployment; 3. Comprehensive official documents; 4.
Easy to get started; 5. Million-level distributed open
source IoT MQTT message server.
 And for EMQ, it also be used for Edge Computing [15]
(Figure 14).

Figure 14 Framework of Edge Computing

 The edge message server is the bridge between the
cloud and local devices. As a message broker running
on the edge computing nodes in the IoT platform
system, the business rules engine is used to process
most of the data locally on the edge nodes, and it can
also respond the request from Device-side in real time
[17].
 There is not much difference in software functions
between the edge platform and the cloud platform. The
main difference is the way of processing data and the
ability, and we can implement the edge computing
platform through the bridge mode.

5 Conclusion and Future Work

 This paper firstly focuses on the protocol MQTT
(Message Queuing Telemetry Transport) used in the
IoT (Internet of Things), which mainly includes the
framework model, main features and data packet
structure. The installation of two related software is
also introduced. The purpose of building a simple
Internet of Things on a personal computer is achieved
through the installation of the software.

Figure 15 Framework of system-2

 Regarding the future work, we plan to use the
software that we discussed above and related IoT
devices to build an edge computing platform with a
certain scale in the laboratory (referred to as system-1,
in this system we place the detection method in the
platform like figure 14). As a comparison, the other
system we directly place the detection method in IoT
devices (referred to as system-2 like figure 15). And we
plan to use DDoS and other related network attacks to
attack systems 1 and 2 respectively. By comparing and
analyzing the related values of memory consumption,
energy consumption, time spent, and accuracy rate of
each device in the systems, and through the results, we
analyze the role of edge computing in IoT security.

Reference
[1]. Cisco, “Cisco Visual Networking Index (VNI),”

Globle Forecast Update, pp. 1–35, 2017.
[2]. B. S. Adiga, P. Balamuralidhar, M. A. Rajan, R.

Shastry, and V. L.Shivraj, “An Identity Based
Encryption Using Elliptic Curve Cryptography
for Secure M2M Communication,” in
Proceedings of the First International
Conference on Security of Internet of Things,
ser. SecurIT’12. ACM, 2012, pp. 68–74.

[3]. IBM Developer homepage
https://www.ibm.com/developerworks/jp/iot
/library/iot-mqtt-why-good-for-
iot/index.html

[4]. Y. Upadhyay, A. Borole and D. Dileepan,
"MQTT based secured home automation
system," 2016 Symposium on Colossal Data
Analysis and Networking (CDAN), Indore,
2016, pp. 1-4.

 情報処理学会研究報告

IPSJ SIG Technical Report

○c 2020 Information Processing Society of Japan

7

[5]. M. Singh, M. A. Rajan, V. L. Shivraj and P.
Balamuralidhar, "Secure MQTT for Internet
of Things (IoT)," 2015 Fifth International
Conference on Communication Systems and
Network Technologies, Gwalior, 2015, pp.
746-751

[6]. Introduction of MQTT server
https://github.com/mqtt/mqtt.github.io/wiki
/servers

[7]. Z. Shelby, Sensinode, K. Hartke, C. Bormann,
and U. B. TZI, “Constrained application
protocol (coap) draft-ietf-core-coap-
17,” http://tools.ietf.org/html/draft-ietf-
core-coap-17, 2013.

[8]. M. B. Yassein, M. Q. Shatnawi and D. Al-
zoubi, "Application layer protocols for the
Internet of Things: A survey," 2016
International Conference on Engineering &
MIS (ICEMIS), Agadir, pp. 1-4, 2016.

[9]. Q. Sarhan and I. Gawdan, “Java Message
Service Based Performance Comparison of
Apache ActiveMQ and Apache Apollo
Brokers”, sjuoz, vol. 5, no. 4, pp. 307-312,
Dec. 2017.

[10]. Introducing the MQTT Protocol
https://www.hivemq.com/blog/mqtt-
essentials-part-1-introducing-mqtt/

[11]. P. T. Eugster, P. A. Felber, R. Guerraoui, and
A.-M. Kernmarrec, “The many faces of
publish/subscribe,” ACM Computing
Surveys, vol. 35, no. 2, pp. 114–131, June
2003.

[12]. P. Saint-Andre, “Streaming XML with
Jabber/XMPP,” IEEE Internet Computing
pp. 82-89, Oct 2005.

[13]. Eclipse Mosquitto homepage
https://mosquitto.org/

[14]. Mosquitto
https://github.com/eclipse/mosquitto

[15]. EMQ homepage https://www.emqx.io
[16]. S. Ahmed, A. Topalov and N. Shakev, "A

robotized wireless sensor network based on
MQTT cloud computing," 2017 IEEE
International Workshop of Electronics,
Control, Measurement, Signals and their
Application to Mechatronics (ECMSM),
Donostia-San Sebastian, pp. 1-6, 2017.

[17]. EMQ’s document.
 https://docs.emqx.io/broker/latest/en/

