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Evaluating the Effectiveness of Pixel Deflection Defending
against Adversarial Attacks

Ruishan Li1,a) Yaokai Feng2,b) Kouichi Sakurai2,c)

Abstract: It has been shown that DNNs can be easily fooled by adding carefully crafted adversarial perturbations
to input images. To defend against these vulnerabilities, many approaches that attempt to improve the robustness of
DNNs have been proposed. Prakash et al. present a method called Pixel Deflection, which replacing pixel with its
neighborhood in an image so that classification accuracy is significantly preserved. This is because image classifiers
tend to be robust to natural noise but adversarial attacks do not. A subsequent wavelet denoising operation is used to
soften the corruption from attack perturbations and pixel deflection.Both pixel deflection and wavelet denoising are
transformation methods to defend against adversarial examples, the contribution of each part has not been elucidated.
In this study, we evaluate the effectiveness of Pixel Deflection with five kinds of attacks in detail. The results show that
that recovered accuracy is mainly from its denoising processing, wavelet denoising, not pixel deflection. Comparing
pixel deflection and wavelet denoising separately with totally 5000 adversarial examples, wavelet denoising shows a
bit of drop of accuracy than two together while pixel deflection does not improve accuracy obviously than no defense.
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1. Introduction
It is said that deep learning has been providing major break-

throughs in solving many application problems and hard scien-
tific problems at an unprecedented scale [1], [12]. For instances,
reconstruction of brain circuits; analysis of mutations in DNA;
and analyzing the particle accelerator data. Deep neural networks
have also become the preferred choice to solve many challeng-
ing tasks in speech recognition and natural language understand-
ing [1]. Deep learning also became the center of attention in the
field of Computer Vision. Since 2012, the Computer Vision com-
munity has made big contributions to deep learning research, en-
abling it to provide methods for the problems in medical science
and in mobile applications. The breakthrough in AI (Artificial
Intelligence) in AlphaGo Zero [25] also was originally proposed
for the task of image recognition.

With the help of the continuous improvements of deep neu-
ral network models and efficient deep learning software libraries,
deep learning has entered into safety and security critical appli-
cations, e.g. self-driving cars, surveillance, maleware detection,
drones and robotics, and voice command recognition and facial
recognition ATM and Face ID security on mobile phones. Thus,
we can say that deep learning solutions are about to play a major
role in our daily lives.

However, an intriguing weakness of deep neural networks
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in the context of image classification was discovered in the
work [27]. That work showed that despite their high accuracies,
modern deep networks are surprisingly susceptible to adversarial
attacks with small perturbations to images that remain impercep-
tible to human vision system. These malicious adversarial attack
images are normally carfted using an optimization procedure to
search for small but effective perturbations, we will discribe them
in Chapter 2. Adversarial attacks can make a neural network clas-
sifier completely change its prediction about the changed images.
Moreover, the same image perturbation can fool multiple network
classifiers [1]. The profound implications of these results have
drawn a wide interest of researchers in adversarial attacks.

Many interesting research results have been published regard-
ing adversarial attacks on deep learning in Computer Vision.
For example, in addition to the image-specific adversarial per-
turbations [27], the work [16] showed the existence of univer-
sal perturbations that can fool a network classifier on any image.
The work [2] showed that even 3-D print real-world objects can
fool deep neural network classifiers. The work [1] presented a
comprehensive survey on adversarial attacks on deep learning in
Computer Vision.

Image classification CNNs (Convolutional Neural Networks)
have been applied for many important real-world systems. For
instance, CNNs can be used by self-driving cars to identify stop
signs [20]. Such systems have become targets for adversarial at-
tacks. Recent work has shown that classifiers in such systems
can be tricked by small, carefully-crafted, imperceptible pertur-
bations to a natural image [24]. A CNN may misclassify an image
into a different class by such perturbations. For example, a ”1” is
recognized into a ”9” or a stop sign into a yield sign. Obviously,

c© 2020 Information Processing Society of Japan



IPSJ SIG Technical Report

defending against these vulnerabilities is critical for any applica-
tion systems using CNN for image recognition. Several existing
works proposed defense methods that are differentiable transfor-
mations before classification. These defenses methods appear to
work well at first, but attackers can easily circumvent them by
”differentiating through them”, i.e. by taking the gradient of a
class probability with respect to an input pixel through both the
CNN and the transformation [24].

In the background mentioned above, the research on the de-
fenses of adversarial attacks for deep learning has become one of
the hot topics in this field. Prakash et al. [24] has proposed a de-
fense method with high efficiency and high level of accuracy. In
this study, we investigate this method in detail. The conception
will be introduced in Chapter 4 and the result will be presented in
Chapter 5.

2. Adversarial Attacks
It is said that most image classification models can be

fooled [8], [27]. Several proposed techniques have been proposed
to generate an image that is perceptually indistinguishable from
another image but is classified into different classes. If this is
done when model parameters are known, the paradigm is called
white-box attacks. Otherwise, called black-box attacks.

In the work [24], a brief overview of several well-known
attacks is presented including 1) Fast Gradient Sign Method
(FGSM); 2) Iterative Gradient Sign Method (IGSM); 3) L-BFGS;
4) Jacobian-based Saliency Map Attack (JSMA); 5) Deep Fool
(DFool); 6) Carlini&Wagner (C&W); 7) Projected Gradient De-
scent (PGD). They are briefly explained in this chapter.

2.1 Fast Gradient Sign Method(FGSM)
FGSM [8] is a single step attack process. It uses the sign of

the gradient of the loss function, ` , w.r.t. to the image to find the
adversarial perturbation. For a given value, FGSM is defined as:

x̂ = x + εsign(5`(F(x), x)) (1)

This approach means that the supply of adversarial examples
is continually updated, to make them be able to resist the current
version of the model.

2.2 Iterative Gradient Sign Method(IGSM)
IGSM [11] is an iterative version of FGSM. After each iteration

the generated image is clipped to be within a L1 neighborhood of
the original and this process stops when an adversarial image has
been discovered. Both FGSM and IGSM minimize the L1 norm
w.r.t. to the original image. Let x0 0 = x, then after m iterations,
the adversarial image is obtained by:

x′m+1 = Clipx,ε{x′m + α × sign(5`(F(x′m), x′m))} (2)

2.3 L-BFGS
L-BFGS(Limited-memory Broyden-Fletcher-Goldfarb-

Shanno algorithm) [27], [28] tries to find the adversarial input as
a box-constraint minimization problem. L-BFGS optimization
is used to minimize L2 distance between the image and the

adversarial example while keeping a constraint on the class label
for the generated image.

In general, the exact computation of distance between two im-
ages is a hard problem, so this computation is approximated using
a box-constrained L-BFGS. Concretely, performing line-search
to find the minimum c > 0 for which the minimizer r of the fol-
lowing problem satisfies f(x + r) = l.

2.4 Jacobian-based Saliency Map Attack(JSMA)
JSMA [22] estimates the saliency of each image pixel w.r.t.

to the classification output, and modifies those pixels which are
most salient. This is a targeted attack, and saliency is designed to
find the pixel which increases the classifier’s output for the target
class while tending to decrease the output for other classes.

2.5 Deep Fool(DFool)
DFool [17] is an untargeted iterative attack. This method ap-

proximates the classifier as a linear decision boundary and then
finds the smallest perturbation needed to cross that boundary.
This attack minimizes L2 norm w.r.t. to the original image.

2.6 Carlini&Wagner (C&W)
Carlini&Wagner (C&W) [3] is one of the strongest proposed

adversarial attack. C&W updates the loss function, such that it
jointly minimizes Lp and a custom differentiable loss function
that uses the unnormalized outputs of the classifier (logits).

2.7 Projected Gradient Descent(PGD)
Projected Gradient Descent (PGD) [14] is an iterative variant

of FGSM. In each iteration, PGD follows the update rule:

x′m+1 =
∏

c

lip{FGS M(x′m)} (3)

Madry et al. observe that the local maxima of the cross-entropy
loss found by PGD with 105 random starts are distinctive, but
all have similar loss values, for both normally and adversarially
trained networks. Inspired by this concentration phenomena, they
propose that PGD is a universal adversary among all the first-
order adversaries, i.e., attacks only rely on first-order informa-
tion.

3. Defenses
Defensive strategies against adversarial examples can be cate-

gorized into three kinds.

3.1 Adversarial Training
Adversarial training [8], [11], [29] is one of the most exten-

sively investigated defenses against adversarial attacks. It de-
fends against adversarial perturbations by training networks on
adversarial images that are generated during training. Adver-
sarial training improves the classification accuracy of the target
model on adversarial examples [8], [11], [27], [29]. On some
small image datasets it even improves the accuracy of clean im-
ages [8], [27] although this effect is not found on ImageNet [6]
dataset. However, adversarial training is more time consuming
than training on clean images only, because online adversarial
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example generation needs extra computation, and it takes more
epochs to fit adversarial examples [29]. These limitations hinder
the usage of harder attacks in adversarial training.

3.2 Input Transformations
Preprocessing based methods process the inputs with certain

transformations to remove the adversarial noise, and then send
these inputs to the target model. Gu and Rigazio [10] first pro-
pose the use of denoising auto-encoders as a defense. Osadchy
et al. [19] apply a set of filters to remove the adversarial noise,
such as the median filter, averaging filter and Gaussian low-pass
filter. Graese et al. [9] assess the defending performance on a
set of preprocessing transformations on MNIST digits, includ-
ing the perturbations introduced by image acquisition process,
fusion of crops and binarization. Das et al. [5] preprocess images
with JPEG compression to reduce the effect of adversarialnoises.
Meng and Chen [15] propose a two-step defense model, which
detects the adversarial input and then reformit based on the dif-
ference between the manifolds of clean and adversarial examples.
Liao et al. [13] use the reconstruction error of high-level features
to guide the learning of denoisers. Pixel deflection [24] in this
study replaces a random pixel with its neighbour, is also belong
to here.

3.3 Gradient Masking
Another family of adversarial defenses is based on the so-

called gradient masking effect [21], [23], [29]. These defenses ap-
ply some regularizers or smooth labels to make the model output
less sensitive to the perturbation on input. Gu and Rigazio [10]
propose the deep contrastive network, which uses a layer-wise
contrastive penalty term to achieveoutput invariance to input per-
turbation. Nayebi and Surya [18] use saturating net-works for
robustness to adversarial noises. The loss function is designed to
encourage the activations to be in theirsaturating regime. The ba-
sic problem with these gradientmasking approaches is that they
fail to solve the vulnerability of the models to adversarial at-
tacks, but just make theconstruction of white-box adversarial ex-
amples more difficult. These defenses still suffer from black-box
attacks [21], [29]generated on other models.

4. Conception
4.1 Pixel Deflection

In past studies, random noises have proved to be a practical
method to defend against adversarial examples. This is because
neural networks are robust to adversarial attacks at a certain de-
gree, with a loss of accuracy at the same time. By contrast, ad-
versarial examples are fragile to noises as the perturbations are
carefully crafted. To avoid large accuracy loss, Prakash et al. [24]
introduce a new image transformation method. Choosing a pixel
from an image randomly, and then replace it with another ran-
domly selected pixel in the previous pixel’s small square neigh-
borhood. They call this process Pixel Deflection.

4.2 Wavelet Denoising
As both adversarial perturbations and pixel deflection add

noises to images, methods of removing these effects, denoiser,

Fig. 1 Algorithm: Pixel Deflection Transform.

Fig. 2 An image shows how pixels deflect.

has become necessary. JPEG compression is a well known com-
pression method. It has been shown that noises can be removed
by JPEG compression [7], but also causes signal loss. Results
also show this process can recover classification accuracy on
some of the adversarial examples for neural networks [5], but
lose some accuracy on clean images. Previous research has es-
tablished that denoiser has a certain effect on defending adver-
sarial attacks. Soleymani et al. [26] use wavelet decomposition
to defend against adversarial examples, with 3 kinds of subbands
manipulation. Wavelet denoising relies on the wavelet represen-
tation of the image. In wavelet domain, Gaussian noise can be
represented by small values and can be removed by setting coef-
ficients to a threshold. Wavelet transform is a widely used process
technique in image denoising [4].

5. Experiment
In this chapter, we first generate adversarial examples, then use

pixel deflection defend against these adversarial examples.
We performed experiments on ImageNet Validation dataset.

ImageNet Validation set has 50,000 images of 1000 classes. We
use ResNet-50 pretrained model from keras. The keras ResNet-
50 model has a Top-1 accuracy of 74.9% on ImageNet Validation
set. Amount of images in our experiments is 1000.

As about 25% of images are misclassified by the model origi-
nally, they are considered attacking successfully without any per-
turbation by attacking tools. However, these cases are useless for
measuring the effectivveness of attack or defence because there is
no difference between input and output. Therefore, we select our
1000 images from ImageNet Validation set that can be originally
classified correctly by keras ResNet-50 model.
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Fig. 3 An adversarial image, overlaid on a typical image, can cause a classifier to miscategorize a jay as
a quail.

Fig. 4 Images from up to down: origin, FGSM, LBFGS, PGD, C&W, L2BIM.

5.1 Generating Adversarial Examples
We use foolbox model to generate adversarial examples. Fool-

box is a Python toolbox to create adversarial examples that fool
neural networks. Attacks are constricted with L-2 distance less
than 0.04. We set parameter of each attack method as follows:

FGSM: confidence of miscalssification > 0.5;
L-BFGS: all default;
PGD: epsilon=0.02, stepsize=0.004, iterations=10;
C&W: confidence of miscalssification > 0.9;
L2BIM: epsilon=0.03, stepsize=0.005, iterations=20.

A sample of adversarial image is shown in Fig. 3.
Some of the adversarial images we generate. Compared with

original images in Fig. 4.

Table 1 The L2 distance and classification top-1 accuracy of generated ad-
versarial examples.

Attack |L2| Accuracy(%)
FGSM 0.01 8.1
L-BFGS 0.01 0.4
PGD 0.01 0
C&W 0.01 0
L2BIM 0.03 0.1
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The accuracy of classfying these generated images is shown in
Table 1. Python codes of generating adversarial examples are in
Appendix .

5.2 Evaluating Pixel Deflection
Defence codes consist of two parts, pixel deflection and

wavelet denoising. We use pixel deflection original code pro-
vided by author in [24]. Wavelet denoising in the code is called
by scikit-image package. The parameters in pixel deflection are
the window of size for pixel deflection and the number of pixel
deflections to be performed.

We firstly verify the basic defence effect of pixel deflection
against our adversarial examples.

Table 2 Top-1 accuracy on various attack before and after defense.

Attack Before Defense(%) After defense(%)
FGSM 8.1 86.1
L-BFGS 0.4 83.9
PGD 0 69.8
C&W 0 72
L2BIM 0.1 23.7

In Table 2, although pixel deflection doesn’t get as good result
as in [24], it can defend against FGSM and L-BFGS attack with
accuracy of 86.1% and 83.9%. PGD and C&W attack are also be
blocked by 69.8% and 72.0%. It only get bad result on L2BIM
attack because of the larger L2 distance.

But when we adjust the parameter of deflection window size
and the number of deflections, we don’t get the changes like
in [24], the results don’t show much difference. We also add
and modify other parameter in pixel deflection, but still don’t get
much difference.

Table 3 Top-1 accuracy on various attack with pixel deflection and wavelet
denoising seperately.

Attack Only Pixel Deflection Only Wavelet Denoising
FGSM 53.6 83.7
L-BFGS 4.0 81.6
PGD 0.29 64.1
C&W 0.12 67.1
L2BIM 0.29 18.3

To observe the changing trend of the results, we split the exper-
iment into two parts, deflection and denoising. Without the de-
noising part, pixel deflection get only 53.6% accuracy on FGSM
attack and amazing low accuracy near 0% on three other at-
tacks(in Table 3). In constrast, wavelet denoising without pixel
deflection gets only a bit drop comparing with the two together.

Further, we test on random noises with wavelet denoising. Re-
sult in Table shows that random noises with wavelet denoising
gets even better result than pixel deflection with wavelet denois-
ing.

Table 4 Accuracy with different numbers of deflections on L-BFGS attack.

Numbers of Deflections Pixel deflection Random Noises
200 4.1 28.5
1000 26.2 74.1
10000 69.8 62.9

We doubt if numbers of deflections affect the deflection, so we

do another test on different numbers of deflections separately on
both pixel deflection and random noises without wavelet denois-
ing, and we get result in Table 4.

6. Conclusion
According to our results of experiments, pixel deflection and

wavelet denoising together can defend low L2 distance attacks.
Based on totally 5000 adversarial examples generated by fool-
box, we evaluate pixel deflection and wavelet denoising seper-
ately. The accuracy recovered by pixel deflection and wavelet
denoising is mainly from wavelet denoising, not pixel deflection.
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