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Generative Face Completion via edge learning and
semantic attention

CAO SHILEI1,a) DANILO VASCONCELLOS VARGAS2,b) KOUICHI SAKURAI2,c)

Abstract: Face completion, which is to reproduce the missing region of an incomplete face image, have yield signif-
icant improvements through adaptation of neural network models. However, since the the discontinuity of the local
pixels, the existing methods often fail to fill in semantically plausible and context aware details. To handle this prob-
lem, we propose a two-stage adversarial framework, for filling the missing regions with sharp edges and semantically
plausible textures. Specifically, our model learns to predict the edges first, and then completion network fills the miss-
ing region using the predicted edges as a priori. To this end, we propose a novel U-net architecture, which including
coherent semantic attention parts. Semantic attention parts not only preserve contextual structure but also serve as the
estimation of the missing parts. We applied our model in generative face completion, and evaluated our method on
CelebA datasets.
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1. Introduction
Face completion, which can be considered as a subset of im-

age inpainting, is a research hotspot in computer vision and ma-
chine learning communities. It refers to reconstructing face im-
ages which have missing regions and can be utilized in many ap-
plications such as removing unwanted objects from face pictures
or restoring damaged photographs. The core challenge of face
completion is to maintain global semantic structure and generate
realistic details.

In general, traditional image inpainting methods are based on
the assumption that the missing area should contain similar pat-
terns of the background region. Those methods typically fill miss-
ing pixels by matching and pasting patches based on low level
features such as mean square difference of RGB, values or SIFT
descriptors and so on. These methods recover well for highly
repetitive texture images, but fail to produce images with com-
plex structures. For example, as one of the once state-of-the-art
methods, the PatchMatch[2] matches and copies the background
patches into holes starting from low-resolution to high-resolution
or propagating from hole boundaries. While this approach gener-
ally produces smooth results, especially in background inpainting
tasks, it is limited by the available image statistics and not able
to capture high-level semantics or global structure of the image.
Furthermore, as the traditional diffusion-based and patch-based
methods assume missing patches can be found somewhere in the
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background regions, they cannot produce novel image contents
for complex inpainting regions where involve intricate structures
like faces [3].

Over the last few years, the deep learning based methods have
emerged as a promising alternative avenue by treating the prob-
lem as learning an end-to-end mapping from masked input to
completed output. Especially, the adaption of deep convolutional
neural networks (CNN)[5] and generative adversarial networks
(GAN)[6] contributed to the vigorous development of inpaint-
ing. Context-encoder [4] is one of the first works that apply deep
neural networks for image inpainting which cooperates autoen-
coders and GAN for image inpainting. this framework achieved
amazing results, However, it only uses the local discriminator, al-
though local discriminator facilitates exposing the local structure
details, local discriminator only has main drawback that it pushes
the generative network to produce independent textures that are
incompatible with the whole image semantics Yang et al. [7] pro-
poses to use style transfer for image inpainting. More specifi-
cally, it initializes the hole with the output of context-encoder,
and then improves the texture by using style transfer techniques
to propagate the high-frequency textures from the boundary to the
hole. ACM2018 Semantic Inpainting[8] is an framework intro-
duced LSTM to string all the subtaskes together. in this way, the
essence learned from the previous subtasks are exploited to ease
the learning of subsequent subtasks, which can also discribed as:
this paper introduced LSTM architecture into PGN to string all
subtasks to control the information flow in the PGN. It is able to
avoid the information disturbed and improve the quality of the
inpainting image

While these learning-based methods are significantly more ef-
fective in capturing high-level features than prior techniques, they
still only useful for handling very low-solution inputs due to the
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memory limitations and difficulty in training. Even for slightly
lager images, the inpainted regions would appear blurry and un-
pleasant boundries become visible. In order to achieve more
fine-detail images, especiallly for face images, we proposed our
framework. In our structure, we divided the inpainting process
into two steps. The first step can be constructed by training net-
work to detect the foreground contour of the corrupted image,
and then completes the missing contours of the foreground ob-
jects with a contour completion module, rough out the missing
contents. Then the refinement network leverages accurate con-
tour prediction to guide image completion. In the second net-
work, both predicted edges and original images with holes are
fed to the U-net architecture. In order to get the filling holes
semantic consistent, we propose a novel U-net architecture with
pyramid semantic attention filling block. This semantic attention
filling block can be considered as prediction and noises which
can capture more effective features. With the purpose of main-
taining more semantic information, we apply pyramid structure
to semantic attention filling block. Our specific U-net connection
utilizes high-level contextual information to fill the hole regions
of low-level encoder feature maps progressively from bottle-neck
layer to up. The fully filled encoder feature maps are concate-
nated with the corresponding decoder feature by skip connection.
It can avoid the transmission of invalid information in hole re-
gions of encoder feature maps when using skip connection, and
make the model perceive high-level contextual information.

Based on our framework, we design our loss function specially,
including consistence loss, reconstruction loss, edge loss, style
loss and adversarial loss. To summarize, our contributions are as
follows:

1.An end-to-end trainable network that combines edge gener-
ation and image completion to fill in missing regions exhibiting
fine details.

2.A novel U-net architecture with pyramid semantic attention
block fully filled in encoder feature maps.

3.A novel loss function for semantically plausible and context
aware details

2. Related Work
2.1 GAN and improvement

Adversarial Neural Network (GAN) is a framework for esti-
mating generative models via adversarial nets which first pro-
posed by Ian Goodfellow in 2014.This framework corresponds
to a minimax two-player game, looking for a point called Nash
equilibrium that is simultaneously a minimum of the defending
players cost and a maximum of the attackers attacking player
cost. to Since the improvement of computing speed and the de-
velopment of hardware, deep learning methods are widely used in
image process. Deep learning and GAN-based approaches have
emerged as a promising paradigm for image inpainting. How-
ever, since GAN was proposed in 2014, there have been some
problems such as difficulty in training, difficulty in convergence,
loss of generator and discriminator that cannot indicate the train-
ing process, and lack of diversity of generated samples. Since
then, many researchers have proposed improvements that actu-
ally address some of the problems, such as DCGAN[9],Alec et

al. introduced CNN into generator and discriminator
Wasserstein GAN (WGAN) [10],Martin Arjovsky et al. used

Wasserstein distance (also known as Earth Mover distance) to re-
place jenson-shannon divergence. In this way, the gradient disap-
pearance problem is solved theoretically. In addition, WGAN
also theoretically gives the reason for mode collapse in naive
GAN. WGAN-GP [11] optimized the structure of WGAN, us-
ing gradient penalty instead of weight clipping for satisfying the
weight pruning constraint. BEGAN [12], introduce Proportional
Control Theory to the GAN for more stable convergence. LS-
GAN [13] Mao et al. proposed least square GAN. The main idea
is to provide a smooth and unsaturated gradient loss function for
discriminator D for the sake of improving picture quality.

More relevant tasks to inpainting is conditional image gener-
ation. For example, Pix2Pix GAN[14], Phillip Isola proposed a
networks structure not only learn the mapping from input image
to output image, but also learn a loss function to train this map-
ping. This makes it possible to apply the same generic approach
to problems that traditionally would require very different loss
formulations. PatchGAN [14] rather the regular GAN maps from
the image to a single scalar output, which signifies real or fake,
the PatchGAN maps to an array of outputs each number in the
array signifies whether the patch in the image is real or fake. It
is widely used in discriminators. CycleGAN [15] consists of two
pairs of generators and discriminators, and used cycle-consistent
to map unpaired data.

2.2 Image inpainting with GAN
Using deep neural network for image inpainting has also been

started by Pathak et al. [4], which architecture cooperate autoen-
coder and GAN for generating the predicted image. Iizuka et al.
[16] propose local and global discriminators, assisted by dilated
convolution [17] to improve the inpainting quality and to handle
rectangular masks at any location. However, it requires the previ-
ous processing steps to enforce the color coherency near the hole
boundaries. Guilin Liu et al. [18]proposed gated convolution,
which can repair any non-central and irregular region. Hongyu
Li et al. [19] put up with a fined deep generative model-based
approach with a novel coherent semantic attention (CSA) layer,
which can not only preserve contextual structure but also make
more effective predictions of missing parts by modeling the se-
mantic relevance between the holes features.

2.3 Attention Modeling
Attention model is first proposed by Bahdanau et.al.[20], In-

spired by how human pay visual attention to different regions of
an image. Human visual attention allows us to focus on a certain
region, while ignoring some details of the surrounding regions,
and then adjust the focal point or do the inference accordingly.

Due to this mechanism, when computing resources limited, at-
tention modeling can be applied to solve the problem of infor-
mation overload, thus it may allocate the computing resources to
more important tasks.

In recent years, the attention model based on the relationship
between the surrounding contextual and masked regions is widely
used for inpainting tasks. Contextual Attention [21]proposes a
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Fig. 1 The framework of the Network

contextual attention layer which searches for a collection of back-
ground patches with the highest cosine similarity to the coarse
prediction. Yan et al. [22] introduce a shift-net powered by a
shift operation and a guidance loss. The authors use shifted en-
coder features to estimate the prediction areas in the middle layer
of decoder. Song et al. [23] introduce a patch-swap layer, which
replaces each patch inside the missing regions of a feature map
with the most similar patch on the contextual regions, and the
feature map is extracted by VGG network. Ning Wang et al. [24]
use a multi-scale image contextual attention learning for inpaint-
ing. Hongyu Li et al. [25]optimized the coherent semantic at-
tention. generate the predicted patches with the consideration of
surrounding predicted patches.

3. Approach
The purpose of our framework is to fill the incomplete image

with a visually pleasing appearance. To this end, we adopt U-Net
as the baseline network. It is a cascade of three modules: incom-
plete contour detection module, contour completion module and
image completion module. In the following, we first introduce
the guidance loss and Shift-Net, and then describe the model ob-
jective and learning algorithm.

3.1 Network structure
Our model consists of three steps: incomplete contour detect,

contour complete and image complete. The overall framework of
our inpainting system is shown in Fig. 1.

The contour completion model is composed of a generator and
a discriminator. The generator is a coarse network aims to gener-
ate the complete edge image. This completed edges maps are not
only the input of the refinement network but also the constraint of
the recovered image.

There are many solutions for contour detection including tra-
ditional methods and deep learning methods including DeepCut,
Holistically-Nested Edge Detection and so on. However, for the
speed of image preprocessing, robustness, and ease of use, we
adopt Canny edge maps.

Then we put the masked image and the edge image refinement
network. This refinement network adopt our novel U-net struc-
ture which connection utilizes high-level contextual information
to fill the hole regions of low-level encoder feature maps progres-
sively from bottle-neck layer to up.

Fig. 2 Contour Detection and generator

Fig. 3 Traditional U-net structure

3.2 U-net with pyramid semantic attention block
Recently, the spatial attention based on the relationship be-

tween contextual and hole regions is often used for image inpaint-
ing tasks. Contextual Attention [19] proposes a contextual atten-
tion layer which searches for a collection of background patches
with the highest similarity to the coarse prediction. Yan et al. [22]
introduce a shift-net powered by a shift operation and a guidance
loss. The shift operation speculate the relationship between the
contextual regions in the encoder layer and the associated hole
region in the decoder layer. In this paper we propose a new novel
semantic attention method.
3.2.1 U-Net

The U-net was developed by Olaf Ronneberger et al. for Bio
Medical Image Segmentation. Now, this architecture is widely
used for image process, which briefly showed in Fig.3. It con-
tains two paths. First path is the contraction path (also called as
the encoder) which is used to capture the context in the image.
The encoder is just a traditional stack of convolutional and max
pooling layers. The second path is the symmetric expanding path
(also called as the decoder) which is used to enable precise local-
ization using transposed convolutions. Thus it is an end-to-end
fully convolutional network (FCN). Besides, in this symmetric
architecture, the skip connection is introduced to concatenate the
features from each layer of encoder and those of the correspond-
ing layer of decoder. Such skip connection makes it convenient
to utilize the information before and after bottleneck, which is
valuable for image inpainting and other low level vision tasks in
capturing localized visual details.
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Fig. 4 semantic attention(SA)

3.2.2 Semantic Attention
In this paper, we applied semantic attention, also named

as Shift-Net[22], to take into account the advantages of both
exemplar-based and CNN-based methods for image inpainting.

In exemplar-based inpainting, the patch-based replication and
filling process are iteratively performed to grow the texture and
structure from the known region to the missing parts. And the
patch processing order plays a key role in yielding plausible in-
painting result. Guided by the salient structure produced by CNN,
the filling process in the Shift-Net can be finished concurrently by
introducing a shift-connection layer to connect the encoder fea-
ture of known region and the decoder feature of missing parts.
Thus, our Shift-Net inherits the advantages of exemplar-based
and CNN-based methods, and can produce inpainting result with
both plausible semantics and fine detailed textures.

As shown in Figure 4, we first divide the M and M into patches.
Then, we considers the similarity between features from the sim-
ilarity of values. each neural patch in the hole M searches for the
most similar neural patch on the boundary M. In the last, we copy
the information of the most similar patch in the M as the input of
patch M. We measure with normalized inner product (cosine sim-
ilarity)

Dmaxi =
〈mi,mi〉

‖mi‖ ∗ ‖mi‖

3.2.3 U-net with pyramid semantic attention block
However, for traditional U-net, it is obvious that the values of

masked regions in the skip net is useless, which causes too much
semantic information to be lost. Moreover, the feature informa-
tion of each layer are from lower-level layer under the encoder-
decoder architecture, which results in a lack of high-level seman-
tics.

To solve this problem, we use semantic attention to borrow
or copy feature information from known background patches to
generate missing patches. It is differentiable, thus can be trained
in deep models, and fully-convolutional, which allows testing on
arbitrary resolutions.

For fully use of the semantic information, we propose a pyra-
mid structure shows in Fig.5. In this figure, SA means the se-
mantic attention method, UP means upsampling, since the infor-
mation in the masked regions in the skip net is nearly 0, we use
semantic attention to replaced these regions. Then we use a pro-
gressive strategy to fill remaining hole areas of other feature maps
from deep to shallow. The original and filled feature maps are

Fig. 5 pyramid semantic attention block

Fig. 6 U-net with pyramid semantic attention block

added by the short connection.
In the end, we get our novel U-net with pyramid semantic at-

tention block. It is showed in Fig.6

3.3 Loss Function
Inspired by this process, we design our loss function specially,

including consistence loss, reconstruction loss (TV+L1), edge
loss, style loss and adversarial loss. Here we assume Io means
the original image, Ir is the recovered image, Im is the masked
image, Co means the original edge, Cm is the masked edge, Cr is
the recovered edge.
3.3.1 TV loss

The Total Variation(TV) model can be regarded as the gener-
alization of one-dimensional case, which was initially proposed
by Rudin et al for image denoising, and then generalized to other
image processing problems. TV(isotropic TV):

LTV =
∑

Ir

√
(si+1, j − si, j)2 + (si, j+1 − si, j)2

3.3.2 L1 reconstruction loss
L1 reconstruction loss is the distance between original image

and recovered image with 1 norm.

Lnorm = ‖Ir − Io‖1

3.3.3 edge loss
The first U-Net is the adversarial network for generate the pre-

dict edges. Thus the edge loss is about adversarial loss.
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Ledge = LC−GAN + λLC−L1loss

3.3.4 style loss
When Convolutional Neural Networks are trained on object

recognition, they develop a representation of the image that
makes object information increasingly explicit along the process-
ing hierarchy.Therefore, along the processing hierarchy of the
network, the input image is transformed into representations that
increasingly care about the actual content of the image compared
to its detailed pixel values. Higher layers in the network capture
the high-level content in terms of objects and their arrangement in
the input image but do not constrain the exact pixel values of the
reconstruction. In contrast, reconstructions from the lower lay-
ers simply reproduce the exact pixel values of the original image.
We therefore refer to the feature responses in higher layers of the
network as the content representation.

To obtain a representation of the style of an input image, we
use a feature space originally designed to capture texture infor-
mation. This feature space is built on top of the filter responses in
each layer of the network. It consists of the correlations between
the different filter responses over the spatial extent of the feature
maps. By including the feature correlations of multiple layers, we
obtain a stationary, multi-scale representation of the input image,
which captures its texture information but not the global arrange-
ment. Different from the direct operation of content representa-
tion, style representation uses the form of Gram matrix expanded
into 1-dimensional vectors by Feature Map. The reason for us-
ing Gram matrix is that considering that the texture feature has
nothing to do with the specific position of the image, this feature
can be guaranteed by scrambling the position information of the
texture. The definition of Gram matrix is as follows.

Gl
i, j =
∑

k

F l
i,kF l

j,k

Lstyle =
1

r2WH
ΣrW

x=1ΣrH
y=1(Ir x,y − Io x,y)

2

3.3.5 adversarial loss
Wasserstein GAN (WGAN) makes progress toward stable

training of GANs, but sometimes can still generate only low-
quality samples or fail to converge due to the use of weight
clipping in WGAN to enforce a Lipschitz constraint on the
critic. We adopt WGAN-GP, which propose an alternative to
clipping weights: penalize the norm of gradient of the critic
with respect to its input. This method performs better than
standard WGAN and enables stable training of a wide variety
of GAN architectures with almost no hyperparameter tuning.

3.3.6 loss function

L = λstyle∗Lstyle+λedge∗Ledge+λnorm∗Lnorm+λGAN∗LGAN+λTV∗LTV

4. Experiment
4.1 Experiment environment

Models are implemented on Ubuntu : 18.04.2 LTS Python:

Fig. 7 The result of context encoder 1

Fig. 8 The result of training

Fig. 9 A comparison of two models

3.73, pytorch:1.3.1
Run in hardware CPU: Intel(R) Core(TM) i7-3960X CPU @

3.30GHz

4.2 Experiment result
dataset: CelebA
Fig.7 is the results after 750000 times training. The first line

shows 128*128 pixel images with 64*64 pixels taken out as the
unknown area in the middle. The second line in the image shows
the recovered images and the third line shows the original images.

In Fig.8, the X-axis represents the number of iterations, and the
Y-axis represents the MSE of the image.

Fig.9 shows the difference between models with boundary con-
straints and models without boundary constraints. Two models all
trained for 1 epoch. It can be seen that models via edge learning
is more stable.

c© 2020 Information Processing Society of Japan 5



IPSJ SIG Technical Report

5. Summary and future work
In this paper, we propose a two-stage adversarial framework

with a special shift-connection and dilated convolutions, for fill-
ing the missing region with sharp edges and semantically plausi-
ble textures.

Due to the time limitation, we did not make more comparisons
with the original model. The follow-up work is to process the
data and compare more models. Besides, It is obviously that
the human face image restoration tend to generate similar facial
features, we can consider adding some noises to the bottleneck,
in order for making the generated images more vivid.
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