An Authentication for Ensuring Genuineness of Printed Document based on Digital Watermarking and Image Encryption

MISNI HARJO SUWITO†1 YOSHIFUMI UESHIGE†2 KOUICHI SAKURAI†3

Abstract: Information technology is an open medium easily accessible to anyone without exception including miscreants intending to commit criminal activities. Criminal activities such as printed documents falsifying concern trust of corresponding issuers. Various methods proposed for securing and authentication of printed document for truth to be achieved. In contrast, if such acts of forgery can succeed with ease issuers of original document lose confidence. For example, at the higher education institution or university, producing fake degree certificates have become a critical problem. Therefore, institutions need to come up with innovations to prevent for miscreants to forge such an essential document. Cryptography has applied in diverse application one of them mainly concentrate on image encryption field. To overcome these problems, a comprehensive approach is needed. This paper proposes authentication for ensuring genuineness of a printed document based on watermarking and image encryption. First, executing process discrete wavelet transform-singular value decomposition embedding between host image and watermark image. Second, image encryption and decryption using fractal key and chaos function. The proposed method consists of three phase such as embedding watermarking, generation key, encryption-decryption fractal, and chaos. The beginning generated a key to use to encrypt and decrypt image. Then, image encryption fractal by implementing L-shaped trinomials for encryption and decryption of embedded images from watermarking. Finally, chaos algorithm is used to encrypt and decrypt images from fractal decryption, and results should be same as original. Experimental results show that proposed technique is more secure, efficient with lower computational complexity.

Keywords: Digital Watermarking, Image Encryption, and Decryption, Fractal key, Chaos Function

1. Introduction

The most recent developments of information technology past two decades are invasion of digital media that has penetrated in every aspect of daily life. Digital data can be stored very efficiently with very high quality and can be manipulated easily using computer. A part from that, it is straightforward to spread quickly and cheaply through the data communication network without loss of quality at all. In contrast, for the criminals or hackers, this is an opportunity to intend to attack the network and conduct criminal activities. The act of falsifying printed documents (essential documents) is a critical problem and affects the loss of confidence of the corresponding issuers. A digital watermark is one form of steganography technique that can use for owner identification; ownership proves, broadcast monitoring, transaction tracking, content authentication, copy control, and device control. Therefore, effective and efficient watermarking methods to protect digital data need to develop. Moreover, information should be share to obtain optimal benefits and utilization. Thus, security, and information authenticity should be taken seriously into main objectives of this research.

Encryption is most efficient way to achieve data security. This process achieves a useful role in hiding message content since original information can only recover through description process. Image encryption required for future multimedia security. A password code for identifying individual users is likely to be replaced by future fingerprint biometrics and retina scans. It is also one of the most effective ways to achieve data security. By applying encryption process, the message of information is encoded by authorized person. Image Encryption (IE) schemes have been increasingly studied to meet demand for real-time secure image transmission over private or public networks [1-2]. Image Encryption is required for secure and fast image transmission. Researchers in recent years have presented new chaotic schemes [3-7].

The characteristic chaos of Fractal's image, appropriate for designing secure and reliable cryptosystems. The fractal-based cryptosystem is designed using a complex number rather than the prime number. Thus, a private key generation and public key is carried out using complex number arithmetically. The chaotic nature of fractal leads to key value sensitiveness towards initial value, makes it difficult to produce an accurate key by intruder. An additional advantage of using fractal as a key is size, which impacts on conjecture number that an attacker would need to make to find key, e.g., brute force attack, i.e., it determines the feasibility of a collision attack. In case of using fractal keys, which extend key space, shrink key size and make it more complex [11]. In this paper, Discrete Wavelet Transform and Singular Value Decomposition is a technique for embedding and extracting watermarked imagery. The sub-band coefficient LL3 singular values of host image are modified with a single binary watermark image value for authentication and ensuring genuineness of the printed document. As well Image encryption technique to ensure authenticity of printed documents is proposed to provide efficient, high secure transmission with complexity, and low computation is the main purpose. In the beginning, a generator key is generated to encrypt and decrypt data and images. Furthermore, image encryption algorithm processed by applying an L-shaped fractal encryption. Also, chaos algorithm is also used to encrypt and decrypt last image, and produce same image. In each encrypted image, it is decrypted using fractal key and chaos algorithms.

†1 Kyushu University
†2 Nagasaki University
†3 Kyushu University
which were preceded by embedding and extracting using watermarking technique.

In this paper is organized as follows; in Section 2, Tool and Method, Section 3 Proposed Method, and Section 4 Experiment Result, and the conclusion in Section 5.

2. Tool and Method

2.1 Discrete Wavelet Transform – Singular Value Decomposition

Discrete Wavelet Transform (DWT) is a transformation discrete signal into wavelet coefficients obtained by filtering signal with two different filters that filter low and high pass filter. As the name suggests, DWT-SVD refers to combination of both Discrete Wavelet Transform and Singular Value Decomposition used in digital watermarking scheme. Discrete Wavelet Transform (DWT)split (decompose) digital images into four sections at a frequency sub-band that image. Components sub-band wavelet transformation generated by lowering the level of decomposition. Discrete Wavelet Transform (DWT) can be done by passing a signal via a Low Pass Filter (LPF) and do down-sampling the output of each filter [12]. Discrete Wavelet Transform [12] first level of decomposition, there are four sub-bands: LL, LH, HL, and HH. In two-dimensional application, for each level of decomposition, the first show DWT in the vertical direction, and followed the horizontal direction DWT. After the first level of decomposition, there are four sub-bands: LL1, LH1, HL1, and HH1. For each of progressive decomposition, the LL sub-band use as the final stage of data. To perform the second stage of decomposition, discrete wavelet transform connected to an LL1 band that breaks down into four sub-bands: LL2, LH2, HL2, and HH2. Furthermore, to decomposition into the three levels, discrete wavelet transform has connected LL2 band that breaks the band into four sub-bands: LL3, LH3, HL3, and HH3. The result in 10 sub-bands per segment. LH1, HL1, and HH1 containing the highest frequency band shown in while the frequency band LL3 otherwise. Because the characteristics of multi-resolution decomposition of the wavelet transform, wavelet analysis of the image have an excellent directional selectivity and can combine with the human visual system.

In DWT-SVD image watermarking, watermark image will be embedded into host image and remain hidden. There will be two algorithms used: embedding algorithm and extraction algorithm. Here are algorithms for embedding and extraction.

2.1.1 Embedding Algorithm

Step-1: Host image input and grayscale watermark image and change to a two-dimensional matrix.

Step-2: Decompose the host image matrix using DWT into four matrices, LL, LH, LH, and HH respectively. The DWT level depends on the size ratio between the host image and the watermark image (for example, the 1:2n size ratio where n is the level DWT).

Step-3: Do SVD on high-level DWT matrix (host image): U_iΣ_iViT. To get four singular matrices, Σ_i Where i equal to each LL, LH, LH, and HH.

Step-4: Conduct SVD directly on the watermark image: U_wΣ_wV_wiT to get the singular matrix Σ_w

Step-5: Obtain a modified singular value matrix, Σ_i* from Σ_i. Σ_w* is a function of Σ_i and Σ_w Where the combination depends on the embedding technique used. Different insertion techniques will have different ways to obtain a modified single value matrix.

Step-6: After getting Σ_i* do SVD inverse on U_iΣ_i*ViT (with U_i and ViT precisely from SVD of high-level DWT matrix) to get each modification LL*, HL*, LH*, and HH*.

Step-7: Do invers the DWT on these modified LL*, HL*, LH*, and HH* bands to get a watermarked host image.

2.1.2 Extracting Algorithm

Step-1: Do DWT decomposition on the watermarked host image to get four frequencies: LL, LH, LH, and HH bands. The decomposition rate is the same as the decomposition rate used in the embedding algorithm.

Step-2: Do SVD at the highest DWT frequency: U_iΣ_iViT to obtain singular matrix Σ_i*.

Step-3: Extract the singular matrix of the watermark image, Σ_w(i) of Σ_i* according to the extraction function. This process depends on the embedding function in which the extraction function is the inverse of the embedding function.

Step-4: Do an inverse SVD using an extracted singular image matrix, Σ_w(i) (along with the original image watermark vector U_i and ViT) to recover the watermark image.

2.1.3 Performance of Watermarking Algorithm

The following is a measuring tool to test the performance of a proposed watermarking algorithm.

There are three phase for first level security; first phase to measure host image quality (similarity level) before and after insertion watermark; second phase to measure similarity of original logo with image logo after extraction; third phase to measure robustness and imperceptibility by giving some attacks as cropping, noising, blurring, resizing, etc.

Mean Square Error (MSE) is used to calculate image before and after watermark insertion, which can be expressed by an equation as follows:

\[
MSE = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} (S_{xy} - l_{xy})^2
\]

where x and y are the image coordinates, M and N are image dimensions S, are the watermark and l_y of the host image.

Peak Signal Noise to Ration (PSNR) which is used to measure image quality on a logarithmic scale in decibels (dB) if the value is below 30dB bad image cultivation and when higher than 40dB is high image quality. The equation can be expressed as follows:

\[
PSNR = 10 \log_{10} \left(\frac{\text{max}}{\text{MSE}}\right)
\]

Normalized Correlation (NC) is one of measuring tools used to test watermarked image robustness. The Equation can be expressed as follows:
\[NC(W, W') = \frac{\sum_{i=1}^{W} \sum_{j=1}^{W'} [W(i,j) - W'(i,j)]^2}{\sum_{i=1}^{W} \sum_{j=1}^{W'} [W(i,j)]^2} \]

2.2. Fractal Key

The ability to extend fractal set parameters, and to transform them uniquely [17]. It proves that there are some different fractals. Thus the fractal encryption/decryption procedure can be used as key efficiently.

2.2.1 Fractal Algorithm

In this section, described algorithm used in this study. This algorithm uses a symmetric key. It’s based on the modulo operation [18]. This modulo operation has right inverse. Therefore, this encryption/decryption algorithm is one-to-one which means image decryption does not cause damage in any way. The encryption process is done in two stages. This algorithm works pixel by pixel. Each pixel consists of R, G, B \[\in \{1, 256\} \] (red, green, and blue) color. It is applied to all of each layer. For this purposes define R', G', and B' into matrices representing one layer of the image to be encrypted, each having dimension m x n. Next, let R_key, G_key, and B_key be matrices representing a single key layer, also representing dimensions of m x n. Then to be able to find R', G', and B', matrix representing encrypted image layer (dimension m x n), following algorithm is realized to obtain secret key matrix D' from fractal:

As an image, R'key, G'key, and B'key are matrices representing a single key layer, each having dimension m x n.

Image:

\[\forall D = R_{key}, G_{key}, B_{key} : \forall \mathbf{d}_{ij} \in \{1, m\}, \mathbf{f} \in \{1, n\}, \]

\[d'_{ij} = \sum_{k=1}^{k_{max}} \left(\sum_{l=1}^{l_{max}} r(i,k,l) \times d_{kl} \right) \]

Where

\[K_{max} = \left(\frac{i - 1}{b + 1} \right) + \left(\frac{m - j}{b + 1} \right) + 1, \]

\[L_{max} = \left(\frac{j - 1}{b + 1} \right) + \left(\frac{n - j}{b + 1} \right) + 1, \]

\[K = i - \left(\frac{j - 1}{b + 1} \right) \times (\delta + 1) + (\delta - 1) \times \delta, \]

\[L = j - \left(\frac{i - 1}{b + 1} \right) \times (\delta + 1) + (\delta - 1) \times \delta + 1 \]

and \(r(i,j,k,l) = \sqrt{\left(K - i \right)^2 + \left(L - b \right)^2} \) as weight. Here, \(\lfloor x \rfloor \) denotes the floor \(\forall x \in \mathbb{R} \) and \(\delta \) is the distance in the pixel of the constructed grid.

2.2.2 Fractal Encryption

Let R', G', and B' are a matrix representing a layer of images to be encrypted, each having m x n dimensions. Matrix E represents following algorithm for obtaining encrypted images R', G', and B' (m x n dimension).

\[\forall E' \in R, G, B : \exists E'_{max} : \forall i \in \{1, m\}, j \in \{1, n\}, e'_{ij} = (e'_{ij} + d') \mod 256 \]

Here, mod denotes modular operation. Fig.3 illustrates the encryption process.

2.2.3 Fractal Decryption

Given both secret matrix key D ‘and encrypted image R’, G’, and B’, algorithm can be realized to obtain R', G', and B' (m x n dimension) decryption images represented by an E’ matrix:

\[\forall E' \in R, G, B : \exists E'mxn : \forall i \in \{1, m\}, j \in \{1, n\}, e''_{ij} = ([e''_{ij}] - [d''_{ij}]) \mod 256 \]

2.3 Keystream Generation

This keystream can be generated by using a Logistic Map that has an equation:

\[x_{t+1} = r \cdot x_t - 1 \]

The chaos initial value x0, and constants r serve as secret parameters of Logistic Map.

The MSB bits selected from each pixel Exclusive-ORed are with a four-bits keystream. The following technique obtains four-bits keystream k; chaos value x is taken as a decimal section (after comma) desired length of desired sizes is converted to an integer. The last four bits of integer binary representation are ones as k, without losing generalizations; following describes steps in encryption algorithm for grayscale image.

2.4 Chaotic Encryption algorithm

Chaotic systems have some unusual properties such as sensitivity to initial condition and system parameter, ergodicity and mixing (stretching and folding) properties, etc. These properties make chaotic system a worthy choice for constructing cryptosystems as sensitivity to initial condition/system parameter and mixing properties [19] are analogous to confusion and diffusion properties of a good cryptosystem. In an ideal cryptosystem, confusion reduces correlation between plain-image and chipper-image while diffusion transposes coordinate pixel value. In other words, confusion stage changes data position while, data itself modified during diffusion process [20].

The Hennon map is a dynamical system that implements a discrete-time system. It is one of most studied examples of a dynamical system that exhibits chaotic behavior. Hennon map takes a point \((x_0, y_0) \) in plane and maps it to a new point given by the equation [22-23]:

\[x_{n+1} = y_n + 1 - ax_n^2 \]

\[y_{n+1} = bx_n \]

The map depends on two parameters, a and b, which for classical Hennon map have a value of a = 1.4 and β = 0.3. For traditional values Hennon map is Chaotic. Hennon has a strange attractor.
Figure 1 shows the space diagram for this mapping when it is in a chaotic [24]

Figure 1. The Hennon attractor

Hennon map, map equation is divided into two stages, namely keystream stage and encryption/decryption. In first phase of mainstream generation using Hennon map algorithm. Two keys are required to be algorithms generate a series of numbers of pseudo-random real numbers so that that sequence number can be used as a keystream. Thus numbers must be converted to an integer array with range between 0 and 255. For processing done by absolute sequence number (X0), each number multiplied by 1000. Mathematically integer conversion function can be written as follows:

\[|X_i| = \frac{X_i \times 1000}{\text{Floor}} \]

Then rounding down (Floor) resulting integer (Fi). Having obtained series integer, series mapped to range [0, 255]. Mathematically, mapping function can be written as follows:

\[K_i = F_i \mod 256 \]

2.4.1 Encryption phase

Encryption phase is phase where original image or plain-image (P1) is converted to cipher image (C1) by XOR pixels of plain-image (P1) of keystream (K1) which has been raised. Mathematically this encryption function can be written as follows:

\[C_i = P_i \oplus K_i \] (10)

Where:

\(C_i \): Cipher image (encryption image)
\(P_i \): Plain image (previous image)
\(K_i \): Keystream

Step-1 Perform a permutation, which is to randomize pixels in image P1.

\[\begin{bmatrix} X_{i+1} \\ Y_{i+1} \end{bmatrix} = \begin{bmatrix} 1 & b \\ c & b+c+1 \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \end{bmatrix} \mod (N) \] (11)

Step-2 Extract the 4-bit MSB of each from result image from step 1 above, declare each 4-bit as \(p_i \) (i=1,2,…,n). Note: \(n = n \times n \).

Step-3 Iterate logistic Map to obtain keystream value according to the exposure (7)

Step-4 Encrypt pi with k_i using equation: \(C_i = P_i \oplus K_i \)

Step-5 C1, C2, …, Cn subsequently replaces 4-bit MSB of each encrypted pixel. The result of encryption of all pixels is encrypted image (cipher-image) C.

Figure 2. Digital image encryption process diagram.

2.4.2 Decryption phase

The decryption phase has same process with encryption phase; it is just using a cipher encrypted image (C1) as input image. To decrypt original image from cipher image (C1) by XOR operation for pixel-pixel image cipher (Ci) of keystream (Ki) which has been raised.

Input: encrypted image C (cipher-image), p, q, m (number of iterations), r, x0
Output: Original image P (plain-image)

Step-1 Extract the 4-bit MSB of each pixel from cipher-image C, declare each 4-bit as \(C_i \) (i=1,2,…,n).

Note: n = n x n.

Step-2 Iterate logistic Map to obtain keystream value according to exposure (7)

Step-3 Encryption pi with k_i using equation: \(C_i = P_i \oplus K_i \)

Step-4 P1, P2, …, Pn subsequently replaces 4-bit MSB of each encrypted pixel.

Step-5 Perform an inverse permutation, i.e., rearranging result pixels from step-4 with ACM inverse equation as follows:

\[\begin{bmatrix} X_{i+1} \\ Y_{i+1} \end{bmatrix} = \begin{bmatrix} 1 & b \\ c & b+c+1 \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \end{bmatrix} \mod (N) \]

3. Proposed Method

In this section, implementation authentication based on digital watermarking and Image Encryption techniques, fractal key and chaos functions to ensure genuineness of Print Documents can be illustrated in block diagram can be shown in Figure 4.

Figure 3. Image encryption block diagram

The proposed scheme has three main steps. First, host image and watermark image are embedded using watermarking technique as first level security. Second, watermarked image is encrypted using fractal key (Tromino L-shape) as 2nd level security. Thirdly, it is encrypted by chaos algorithm and as 3rd level security. The general schematic overview as follows and can show in figure 4.

The first stage, host image performed watermark insertion, to embed a message/logo to declare host image ownership by using
watermarking technique. After performing embedding and extracting the results are same as original without any changes, both host image and watermark/logo. It is very difficult to distinguish between the host image before inserted and the host image that has been inserted by human vision. It shows that this technique is quite robust against attacks such as cropping, noise, blurring, etc. The embedding process result can be shown figure 5.

The second stage, after finishing first process, then proceed to second process by encrypting host image of with different schemes (using Fractal Key). The host image will be encrypted using fractal key with L-shape Tromino. This second scheme has high sensitivity characteristics. Here, identified keys used as keys in encryption and decryption rules or procedures. Attributes such as coordinates, iterations, and zooms are required to generate fractal image. If there is a slight change in value, then host image will change in a dramatically. This means that failing cannot restore original host image/original image. When host image encryption is completely unrecognizable, host image looks very messy and cluttered. Then do description, then host image back as before, without any difference. So in this second stage it can also be called a 2nd - security level. Figure 6 is shown image encryption result using Fractal Key.

The third stage, Host Image is done encryption with different scheme. This scheme is also known as chaotic scheme, when subject is encrypted, the result is really different from second scheme. The purpose of this encryption is to randomize host image. Chaos is known for its high sensitivity and is very vulnerable to changes in initial value. Sensitive means that if this key changed slightly, decryption of cipher-image would produce different ciphers in a different meaning from original image (host image). Then do description and results are same. Then it can be called 3rd security level. Figure 7 is a visual result of chaos encryption technique as 3rd level security.

4. Experiment Result

The image selected for this experiment are “Village”, “Marlena”, “Peppers”, and “Sailboat”, which greyscale and image of size 512 x 512 using format *.JPG and as a watermark (logo) is a with size 512 x 512 and format JPEG can show in table 1. The proposed algorithm implemented using MATLAB R2016a programming language on laptops, with Windows OS 10, 64-bit CPU Core i7, 4GB RAM installed.

<table>
<thead>
<tr>
<th>Image Name</th>
<th>Village</th>
<th>Marlena</th>
<th>Peppers</th>
<th>Sailboat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Type</td>
<td>Gray Scale</td>
<td>Color 24 bits/pixels</td>
<td>Color 24 bits/pixels</td>
<td>Color 24 bits/pixels</td>
</tr>
<tr>
<td>File Size</td>
<td>72.6 kb</td>
<td>66.0 kb</td>
<td>48.7 kb</td>
<td>88.2 kb</td>
</tr>
<tr>
<td>Image Size</td>
<td>512 x 512</td>
<td>512 x 512</td>
<td>512 x 512</td>
<td>512 x 512</td>
</tr>
</tbody>
</table>

In experimental stage, embedding and extraction process done by using watermarking technique, while for encryption and decryption process using fractal key and chaos map by applying some image. The image data used in experiment in this research can show in table 1. As for experimental process done with three stages that have described in chapter 3. Then to know the results of this experiment can show in table 2.

<table>
<thead>
<tr>
<th>Image Name</th>
<th>Village</th>
<th>Marlena</th>
<th>Peppers</th>
<th>Sailboat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watermark Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watermarked Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractal Key</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractal Image Encrypted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Encrypted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Decrypted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaos Image Encrypted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaos Image Decrypted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. Embedding Citra host using watermarking technique.

Figure 6. Image Encryption using Fractal Key process

Figure 7. The result of Chaos Image Encryption
5. Security Analysis
In this section will discuss evaluation of above algorithm. Evaluation security analysis includes key space analysis, sensitivity analysis, entropy analysis, histogram analysis, and correlation analysis.

5.1 Key Space Analysis
Space key to declare a different total number that can be used to perform encryption/decryption [25]. Brute-force attacks try all possible keys to decrypt. For brute-force attacks to be ineffective, key space must be larger. Also, secret key parameters used in this encryption algorithm are more than one, p, q, m, x0, and r. In Matlab it can support a maximum unsigned integer of up to 32 bits, so possible optional value is $2^{32} = 4.3 \times 10^9$. For initial value of Logistic Map (x_0), computational precision for 64-bit double-precision according to IEEE floating-point standard is 10^{-15} [25], so number of possible values of x_0 is 10^{45}. Thus, key space is entirely:

$$H(p,q,m,x_0,r) = (4.3 \times 10^9) \times (4.3 \times 10^9) \times (4.3 \times 10^{15}) \times (4.3 \times 10^{15}) = 18.49 \times 10^{48}$$

With large key space size so that algorithms can withstand brute-force attacks. Time required to try all combinations of keys (exhaustive search [26] can show table 3

<table>
<thead>
<tr>
<th>Key Space</th>
<th>Experiment/Sec</th>
<th>Time needed Second</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{48}</td>
<td>10^6</td>
<td>3.215×10^{15}</td>
<td></td>
</tr>
<tr>
<td>10^{42}</td>
<td>10^9</td>
<td>321.50205765</td>
<td></td>
</tr>
<tr>
<td>10^{22}</td>
<td>10^{13}</td>
<td>1.32150205765</td>
<td></td>
</tr>
<tr>
<td>10^{14}</td>
<td>10^9</td>
<td>0.132150205765</td>
<td></td>
</tr>
</tbody>
</table>

In Table 3 it is shown that time taken to try whole key combination is about 3.215×10^{14} using a super fast computer that can perform 1 million test per second. We can imagine that to find out just takes a long time to complete two key combinations that can lead to inefficient brute-force attacks.

5.2 Key Sensitivity Parameter Analysis
Chaos has a sensitive nature, and it is one of Chaos characteristics against small changes in initial value. When applied to image encryption means that if key experiences a slight change, decryption process generates a significantly different image of other cipher (failing to return the cipher-image to original plain-image).

Take a look, algorithm proposed in this paper in section II; Logistic Map is used to generate chaos value, extract four bits of value, and then XORed with 4-bit pixels. A small change initial value (x_0) renders random values generated from Logistic Map significantly different after Logistic Map process repeatedly. The effect of small changes resulted, keystream also differed significantly, and Exclusive-OR operation gave significantly different image results.

Suppose x_0 converted to $x_0 + \Delta$ then a cipher-image is decrypted with key. For example, $\Delta = 10^{-10}$ so initial value of Logistic Map is 0.45000000001. The image decryption 'Sailboat' cipher can be shown in figure 8. This experiment shows that the chaos characteristics sensitivity provide good security from widespread attacks. The slightest change to secret key will result in decryption process resulting in a wrong (different) image.

5.3 Entropy Analysis
Referring to Information Theory, entropy to express the degree of uncertainty in the system. The m message entropy is calculated by equation [6]:

$$H(m) = \sum_{i=0}^{2^m-1} P(m_i) \log_2 \frac{1}{P(m_i)}$$

Where, in this case, $P(m_i)$ to express the m_i probability symbol in message and entropy expressed for bit unit. The random message should have ideal entropy equal to 8, whereas in less random message entropy value is less than eight. If entropy value is less than eight, then there is a predictability degree which is a security threat [27].

In this case image encryption, resulting cipher-image should be ideally 8. In grayscale image there are 256 gray values ($m_0 = 0$, $m_1 = 1$, ..., $m_{255} = 255$) and possibly of each gray value is calculated from its histogram. Without generalization loss, we calculate entropy for grayscale image only. For cipher-image in Figure 2 (a) the entropy is

$$H(m) = \sum_{i=0}^{255} P(m_i) \log_2 \frac{1}{P(m_i)} = 7.9991$$

The entropy result value (7.9991) is very close to 8; this means secure encryption algorithm of entropy attack to predict from information in image.

5.4 Histogram Analysis
Using a histogram, an attacker can perform a frequency analysis to infer a secret key or plain pixel. This kind of attack is called a statistical attack. The cipher-image histogram should be made differently to prevent from statistical attacks, so as not to have statistical similarities. Therefore, the cipher-image histogram must be relatively flat or statistically uniform distribution. A relatively uniform cipher image distribution is an indication that the image encryption algorithm is of good quality [27].

Figure 9 (a) shows the 'Village.' image histogram before it is encrypted, and image (b) is the cipher-image histogram after encrypted. The cipher-image histogram looks flat and is significantly different from plain-image histogram.
5.5 Correlation Analysis

Correlation is a measure that states the relationship strength between linear between random variables. Let x and y be two random variables, two discrete random correlation variables each of n elements expressed by correlation coefficient calculated by following equation [28]:

\[r_{xy} = \frac{\text{cov}(x,y)}{\sqrt{D(x)D(y)}} \]

which in this case is

\[\text{cov}(x,y) = \frac{1}{n} \sum_{i=1}^{n} [x_i - E(x)][y_i - E(y)] \]

(10)

\[D(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - E(x))^2 \]

(standard deviation)

\[E(x) = \frac{1}{n} \sum_{i=1}^{n} x_i \]

(average)

The correlation coefficient value cannot exceed 1 in absolute value. The correlation coefficient +1 value denotes perfect linear correlation, the correlation coefficient -1 denotes perfect linear correlation, while between -1 and +1 express linear dependence degree between two random variables. Coefficient values close to -1 or +1 represent a weak linear relationship.

In most plain-image imagery, correlation coefficients between pixels in series are usually high (close to +1 or -1). The image encryption purpose is to remove correlation between pixels or to make correlation coefficient close to 0.

To investigate plain-image correlation and cipher-image, we calculate correlation coefficient between two horizontally neighboring pixels \(f(i,j) \) and \(f(i, j+1) \), two vertically neighboring \(p(i,j) \) and \(f(i+1, j) \) and two diagonally neighboring pixels \(f(i,j) \) and \(f(i+1, j+1) \), both in plain-image and on cipher-image.

In this experiment, a randomly selected 1000 pixel pairs are located in each direction (vertical, horizontal, and diagonal) from the ‘village’ image along with the experimental image results. The correlation coefficient is calculated by (6), in which case x and y are two neighboring pixels gray. Experimental results can show in Table 4.

<table>
<thead>
<tr>
<th>Correlation Coefficient</th>
<th>Horizontal</th>
<th>Vertical</th>
<th>Diagonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain-image</td>
<td>0.9703</td>
<td>0.9599</td>
<td>0.9435</td>
</tr>
<tr>
<td>Cipher-image</td>
<td>-0.0038</td>
<td>-0.0401</td>
<td>-0.0219</td>
</tr>
</tbody>
</table>

Table 4: A table of correlation coefficients between two neighboring pixels.

Figure 9. Histogram plain-image ‘village’ and Histogram cipher-image ‘village.’ It is the same as ‘village’ histogram of each color looks flat. Based on the experimental results above, a flat histogram on cipher-image can make attacker difficult to infer pixel value or secret key by using a statistical attack.

Figure 10. Distribution of correlation of neighboring pixels in the plain-image and the cipher-image of ‘village.’

6. Conclusion

In this paper, presented a watermarking algorithm for embedding digital imagery and combining with fractal key and chaotic function to encrypt watermark to ensure authenticity and watermark image security. The chaotic nature of fractal functions and large-size encryption key algorithms, sensitivity to small changes in initial values creates an immune attack from exhaustive-key search attack.

From experimental results show that this algorithm can conclude that:

a. The Encryption requirement is to encrypt and decrypt image the result should be same as original.

b. The composition and image color diversity have no significant effect on encryption and decryption time process. In images that have high color composition and diversity with images that have a low color, the composition has same encryption and decryption time process.

c. The encryption algorithm has a key space for \(10^{30}\) and a sensitivity of \(10^{-16}\), so this algorithm is complicated to crack by brute force attacks.

Thus, digital image encryption algorithm is complicated to solve by brute force attack and have high-security quality.

Reference:

