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A Study on Optimization of Similarity Search by R-tree
using Dimension Reduction
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Abstract: Similarity search is necessary in searching multimedia data such as images and sound. Moreover, hierar-
chical spatial indexes such as R-tree enable high-speed similarity search of large-scale multimedia data. Dimension
reduction, which in this paper we are using Simple-Map (S-Map for short), improves the performance of R-tree by
relaxing the curse of dimensionality. In this paper, we propose a method which can further improve the searching per-
formance. First, we investigate the average and the standard deviation of the shrinkage ratio of the dimension reduction
technique used. Then, by referring to those data, we propose a method which uses expanded projection distances to an
optimal level. We report the performance of proposed method by experiments. Experiments show that our proposed
approach are able to improve the searching performance, however, the precision is slightly degraded.
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1. Introduction

Nowadays, computers can be found not only in working areas
such as office and schools, but this high-technology device has be-
coming dispensable in every household and even for every human
being. Since the second half of the 20th century until recently, the
performance of a computer including its computing power and its
storage capacity has been dramatically improved. As a result of
the improvement, it can now handle varieties of multimedia data
such as documents, digital images and audio clips in large quan-
tities. In current world where varieties of information are mixed,
information retrieval technology has become necessary in order
to find the information required by users from among the vast
amount of information. For example instead of going to libraries,
people nowadays tend to search things they want on digital li-
brary via web search engine such as Google and Yahoo. In future
time, information retrieval technology, especially the multimedia
information retrieval will be crucial and highly demanded as peo-
ple will likely search everything through the internet.

Information retrieval techniques are important tools for obtain-
ing data that users want to access. When searching for multime-
dia data, rather than using exact match searching, which is finding
only the information that exactly match the queries, it is more im-
portant to usesimilarity search, which is finding for information
that is similar. This is because, unlike human who can judge if
a pair of data is the same only by looking at them, computers
are unable to do that as in many cases computers judge a pair of
exactly same data as a total different pair. In similarity search
in metric spaces, objects within smaller distance are considered
similar. Thus, similarity search is a task to find objects near to a
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given query object with respect to a given distance.
When the dimensionality of objects ism, the computational

cost to measure distance between two objects isO(m), and when
the number of database objects isn, a naive similarity search by
sequential manner costsO(mn), which is unrealistic for largerm
andn. Hierarchical index structures such as R-tree [1] and M-tree
[2], [3] have been developed in order to weaken the effect ofn. On
the other hand, thedimension reductiontechnique is a method to
avoid influence ofm. The dimension reduction not only reduces
distance computation cost but also relaxes“ the curse of dimen-
sionality”. For example, it is known that the efficiency of R-tree
is decreasing when the dimension is increasing, but the perfor-
mance can be improved if R-tree is constructed on projected ob-
jects into lower dimensional space by dimension reduction. Di-
mension reductions for Euclidean spaces include KL transforma-
tion or principle component analysis (PCA) [4] and FastMap [5].
On the other hand, dimension reductions such as HMap [6] and
Simple-Map (S-Map for short) [7] are applicable to any metric
spaces metricized byL1 distance, Hamming distance, string edit
distance and so on [8].

One of the most important properties of dimension reduction
is that the distance between any two objects is not expanded after
projection. In other word, in dimension reduction, the object is
projected to a low dimensional data so that the projected distance
does not extend with respect to the distance in original space (ac-
tual distance). Although the projected objects of low dimensions
cannot completely maintain the actual distance relationship, it is
important to reduce the information loss. As the projection dis-
tance does not extend the actual distance, it is guaranteed that
distant objects in the projection space are far from the original
space. Thus, this establishes the safety of pruning strategy that
excludes any data, which is far away from a query in the projec-
tion space, from the search target without examining the actual
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distance. However, if the shrinkage of the distance is large, the
object outside the searching range actually becomes closer in the
projection space, resulting in deterioration in searching efficiency.
For PCA, analytically optimal projection can be obtained. How-
ever, for H-Map and S-Map, it has been known no analytically
optimal solution, therefore, it is necessary to use random selec-
tion with evaluation function as a clue. Additionally, in this pa-
per, we propose a method to reduce the effect of the shrinkage of
distance by using expanded projection distance.

In this paper, we use S-Map as the dimension reduction. In
S-Map, the reference object is selected as a pivot [9], [10], [11],
and the distance between each object and the pivot is set as a
coordinate value in projection space. Thereby, the number of co-
ordinates is given as the number of pivots. Then, the number of
pivots at this time is the dimensionality of the projection space
and the distance between objects in the projection space is given
as theL∞ distance. When using S-Map, it is known that the dis-
tance in the projection space is shrunk to a certain level compared
to its actual distance. Therefore, we first investigate the shrinkage
ratio of the data used, and then using the data, we find its aver-
age, the standard deviation and its distribution graph. From those
data, each object is shrunk to approximately half of its distance in
average. Thus, we can say that it may be safe to expand the pro-
jection distance value to an optimal level. However, the proposed
method might be slightly dangerous as not all objects have the
same shrinkage ratio. Although a higher expands value can re-
duce the distance computation and searching time, precision may
drop. Thus, it is necessary to find an optimal value to expand the
projection distance.

2. Similarity Search

2.1 Metric Space
Similarity search is a searching process where to retrieve data

from database that is similar to query. This process is realized
by defining dissimilarity measure between data, calleddistance,
and extracting data in order of distances from query points. The
similarity search system is a system that judges the object which
is near (small distance) to query to be similar, and it then extracts
them from the feature space.

LetD = Rn be the domain of objects, which is the entire fea-
ture space targeted by the similarity search database. Here,R and
n is denoted as the whole real number and the number of dimen-
sion of data respectively. LetM = (D,d) be ametric spacefor
D andd : D ×D → R be a totaldistance functionindicating an
index of dissimilarity measure between any two objects. In the
similarity search we use in this paper, the functiond satisfies the
following axioms of distance, where∀x,∀y,∀z ∈ D:

( 1 ) d(x, y) ≥ 0 (Non-negativity)
( 2 ) d(x, y) = d(y, x) (Symmetry)
( 3 ) d(x, y) = 0 ⇐⇒ x = y (Identity of Indiscernibles)
( 4 ) d(x, y) ≤ d(x, z) + d(z, y) (Triangle Inequality)

The most important property of the above axioms is the triangle
inequality.

Next, we explain on the distance measurement used in the sim-

ilarity search. Letx be any object in the feature space. When
D = Rn, x is represented by ann-tuplex(1), x(2), . . . , x(n). The fol-
lowing three distance measurement functions satisfy the axioms
of distance:

L1 distance :D(x, y) =
∑n

i=1 |x(i) − y(i)|,

L2 (Euclidean) distance :D(x, y) =

√√
n∑

i=1

(x(i) − y(i))2,

L∞ distance :D(x, y) =
n

max
i=1
|x(i) − y(i)|.

In this paper, the distance measurement in the original space
(actual distance) is defined as theL1 distance, and the dis-
tance measurement in the projection space is performed using
L∞ distance.

Additionally, a set of points equidistant from a certain is called
an equidistant plane. Figure 1 below shows an equidistant plane
from the origin in two-dimensional space.L1 distance becomes
a rhombus with sides parallel to the diagonal of the coordinate
axis, whileL∞ distance becomes a square with sides parallel to
the coordinate axis respectively.

: �� distance
: �
�

distance

Fig. 1 Equidistant Plane

2.2 Similarity Query
A similarity query returns all objects which satisfy the selec-

tion conditions. In similarity queries, we seek objects that are
close to the given query object. Suppose a collectionX ⊆ D. A
k-nearest neighbor(k-NN) query returns thek closest elements to
the query objectq. The setRof results satisfies

R⊆ X, |R| = k, and d(q, x) ≤ d(q, y)
for anyx ∈ Rand anyy ∈ X−R. We can also define ak-NN range

query. For a ranger, it returns thek closest elements within a dis-
tancer. In the case ofk = 1 for ak-NN range query, we call this
anNN rangequery.

We now explain theNN-query for spatial indexes with a di-
mension reduction mapping. At first, we examine the distance
between the query and object on the mapped space. When we find
an object whose distance on the mapped space is smaller than the
query range, we calculate the distance on the feature space. If the
distance on the feature space is within the query range, we shrink
the query range to the current distance and register the object as
a temporary answer. Finally, after we found no objects within the
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query range, we return the temporary answer as the optimal an-
swer. At this point, we should note that filtering by distance in
mapped spaces does not affect the accuracy of the search because
d′(x, y) ≤ d(x, y) for anyx, y ∈ D , whered′ is a distance function
over mapped space.

3. Spatial Index Structure

3.1 B-tree
B-tree[12] is an index structure that realized an efficient search

for one-dimensional feature space. It also supports dynamic op-
erations such as insertion and deletion. Since it was proposed in
1970’s, it has been widely used in the fields of databases and file
systems. Generally, form number of data, its searching perfor-
mance is known to beO(logm). In order to increase the efficiency
of utilization of nodes in space, variants of B-tree such as B∗-tree
and B+-tree have been proposed.

3.2 R-tree
B-tree is an efficient index structure, but it can only be applied

to one-dimensional feature space. However, with the progress
of computer performance in recent years, the demand for sim-
ilarity search on multidimensional feature space has increased.
With that, many index structures that realize an efficient similar-
ity search on multidimensional space have been invented. Among
them, R-tree[1], proposed by Guttman, is one of the typical index
structures and is based on the structure of B+-tree.

R-tree divides the target space by ann dimension of hyper rect-
angle called MBR (Minimum Bounding Rectangle).n is the di-
mensionality of the feature. MBR is constructed so that objects
that are spatially close to each other are stored in the same node
as much as possible. An inner node of R-tree has information
of MBR that stores all of its child nodes, and pointer to its child
nodes. Meanwhile, a leaf node stores the pointer to an object in
the database. Here, it is necessary to be aware that there is a possi-
bility that MBRs, which have different nodes, might overlap each
other [13], [14]. It is known that searching efficiency will deteri-
orate when constructing an R-tree for a high dimensional feature.
In this way, as the dimension of the feature space increases, the
shape of the MBR is separated from the normal shape, and the
overlapping becomes large, effecting the searching efficiency to
be deteriorated [15]. This problem is calledthe curse of dimen-

sionality. In this paper, in order to calm the curse, we project a
high dimensional feature space to a lower dimensional space by
using the dimension reduction method S-Map.

3.3 Search using R-tree
For the searching process in R-tree, it visits only the nodes

where the MBR and the query range intersect, in order of the
distance between the MBR and the query point. Therefore, vis-
its to unnecessary nodes can be prevented. However, in the case
of constructing an R-tree using dimension reduction, in the leaf
node, by checking the distance on the projection space before cal-
culating the actual distance between object and query point, we
can minimize the number of actual distance calculation times and
more efficient search is realized.

Now we explain on the similarity search using R-tree. The

searching process starts from the root node, and the nodes is
searched using depth-first search. When the search is in a leaf
node, first we calculate the projection distance to the object that
is in the leaf node. If the distance is smaller than the search range,
the search range value is updated to the distance value. When the
search is in an inner node, the projection distance between the
query and the MBR of its child node is calculated, and only the
node with the MBR that intersects the search range is visited. At
this time, the nodes that need to visit are inserted into the priority
queue called Active Branch List (ABL). The nodes in the ABL
are sorted in ascending order of the distance between the query
and the MBR. By visiting the nodes from the beginning of the
ABL, it is possible to visit from a node with a nearest MBR to the
query. In this way, by controlling the visiting order of the nodes,
it is able to accelerate the contraction of the search range of the
query.

For example, in figure 2, we have MBR A, B, C and a query
point. Consider the situation where all of the MBR A, B, C inter-
sect the initial search range as shown in figure 2. When we are
not considering the visit order, it visits everything in order of el-
ements, in this example, it visits from A to B and then C. On the
other hand, when controlling the visit order as described above,
it visits MBR with the nearest distance from the query, which in
this case is B, and contract the search range up to the distance
between the query and the nearest object inside B. As a result,
it does not have to visit MBR A. In this way, by controlling the
visits order, the searching range can be contracted faster, and thus
realizing an efficient search.

Query

Search range 
before contraction

Search range after 
contraction

A

C

B

Fig. 2 Searching process by R-tree

4. Dimension Reduction

As described in Section 3.2, it is known that searching ef-
ficiency deteriorates when constructing an R-tree for a high-
dimensional feature space. As the dimensionality of the feature
space increases, searching efficiency becomes worse due to the
curse of dimensionality. In order to relax this curse,dimension

reductiontechniques have been developed. By using dimension
reduction, feature space is projected to a lower dimensional space
while maintaining the distance between objects to some extent.
Dimension reductions for Euclidean spaces include K-L transfor-
mation or principle component analysis (PCA) and FastMap. On
the other hand, dimension reductions such as H-Map and S-Map
are applicable to any metric spaces metricized byL1 distance,
Hamming distance, string edit distance and so on. In this paper,
the space which the dimension is reduced by projection is called
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projection space, while the space before the projection is called
original space.

4.1 Projection Space
On the projection space, there is a possibility that the distance

between any two objects shrinks compared to the distance in orig-
inal space. We call this phenomenon asshrinkage of distance. For
example, when an NN-query is executed in the projection space,
there are cases where an object which its distance to the query
point is shorter than the distance in real space will occur, and the
object which is outside the search range in the original space is
reduced to within the search range in the projection space when
dimension reduction is applied. Figure 3 shows an example of
distance shrinkage. The black circle represents an object. In fig-
ure 3, projection from two-dimensional space to one-dimensional
space is performed using orthogonal projection onto coordinate
axes. We can see that the distance on the one-dimensional space
is shorter (shrinking) than the distance on the two-dimensional
space. In this way, although the distance can be reduced, a func-
tion that may expand the distance is not suitable as a projection
function. This is because, during the searching process, we only
measure the distance in original space (called actual distance)
when the objects are within the search range in the projection
space. If the distance expands, it is impossible to filter such ob-
jects.

Distance on two-
dimensional space 

(original space)

Distance on one-
dimensional space 
(projection space)

Fig. 3 Example of distance shrinkage

We denote projection space asD′ = (S′,d′). Here,S′ =
{ f (O1), f (O2), . . . , f (Oi), . . . , f (Om)} ⊆ D andd′ is a global dis-
tance function indicating the distance between any two objects
on the projection space.f : Rn → Rn′ is a projection function
of object from the original space to the projection space. Here,
n′(< n) is the number of dimensions on the projection space. The
following condition holds for the range query on the projection
space due to the shrinkage of distance.

Range(D′, f (Q), r) = {Oi ∈ S|d′( f (Oi), f (Q)) ≤ r}

Range(D,Q, r) ⊆ Range(D′, f (Q), r)

In search of R-tree using projection, it visits only the nodes
where the MBR intersects in the search range in projection space.
When the search is in leaf node, the actual distance is only calcu-
lated only for objects that are within the search range in the pro-
jection space. Since the projection space has a relatively lower
dimension than the original space, the cost of the distance func-
tion d′ can be less thand. By using projection as described, it

is possible to suppress the number of distance computation in
original space, thus we can expect to improve the searching ef-
ficiency. However, in the projection space where shrinkage of
distance occurs extremely, the number of times to compute the ac-
tual distance increases. Therefore, shrinkage of distance caused
by dimension reduction is an important factor related to search
efficiency. The merit is that it is applicable to all distance spaces
that satisfy the axioms of distance.

4.2 Simple Map
The dimension reduction we use in this paper is S-Map. As

described in 4.1, the projection functionf is desirably a function
that is not easily influenced by shrinkage of distance. S-Map uses
the actual distance between one pivot and an object as a projec-
tion function, and projects it onto theL∞ distance space.

We assume two metric spaces (U,D) and (U′,D′), whereD
andD′ are distance functions satisfying triangle inequality. Let
dim(x) for a datax denote the dimensionality ofx. Then, we say
that a mappingφ : U → U′ is adimension reductionif it satisfies
the following conditions for everyx, y ∈ U:

dim(φ(x)) < dim(x) (1)

D′(φ(x), φ(y)) ≤ D(x, y) (2)

Condition (1) means thatφ reduces the dimensionality of data,
and condition (2) means thatD′ provides the lower bound of dis-
tanceD(x, y), which guarantees to ignore a data without com-
putingD in similarity search (safe pruning). For example, if
D′(φ(q), φ(x)) exceeds the current search diameter of a query
q, then x can be ignored, or safely pruned, without computing
D(q, x).

S-Map[7] is a kind ofFrechet embedding, that any finite met-
ric space ofn points can be embedded isometrically inton-
dimensionalL∞ normed space. A similar idea has also been pro-
posed by Hjaltason and Samet, where for a pointp ∈ U called
pivot, we define an S-Mapφp of x ∈ U with p as follows:

φp(x) = D(p, x).

From the triangle inequality, the following inequality holds for
everyx, y ∈ U:

|φp(x) − φp(y)| ≤ D(x, y).

Furthermore, using a setP = p1, . . . , pm of pivots, we define S-
Mapφp with P as follows:

φP(x) = (φp1(x), . . . , φpm(x)).

Suppose that we giveD′ as follows:

D′(φP(x), φP(y)) =
m

max
i=1
|φpi (x) − φpi (y))|.

In other words, if the projected spaceU′ is considered as anL∞
metric space, and whenm is smaller than the original dimension,
then an S-MapφP becomes a dimension reduction.

In this paper, we apply S-Map to the feature quantity (64 di-
mensions) of the object extracted by the feature function, and the
dimension is reduced to 8 dimensions. Then, the image of the
object generated by S-Map is used to construct an R-tree.
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5. Proposed Method

As described above, one of the most important properties of
dimension reduction is that the distance between any two objects
is not expanded after projection. Thus, by projecting objects with
S-Map, the distance between those objects may shrink (and is not
expanding too, from the triangle inequality) compared to origi-
nal distance. This shrinkage, that is the distance deficiency, is
desired to be small for similarity search. The shrinkage of the
distance can be reduced by increasing the projection dimension.
However, increasing the projection dimension will strongly in-
fluenced the curse of dimensionality, resulting in low efficiency
similarity search. Thus, it is important to minimize the shrinkage
of the distance in a lower dimension while maintaining a high
efficiency of similarity search. Thedistance preservation ratio

(DPR, for short) for a setS of pairs (xi , yi) of points is the follow-
ing ratio of sums of distances.∑D′(ϕ(xi), ϕ(yi))∑D(xi , yi)

.

While theshrinkage ratiofor the set of points is as follows:

D′(xi , yi)
D(xi , yi)

.

The DPR for the data that we use is approximately 0.54, where
around 54% of the data distance is preserved in average. More-
over, we also investigate the shrinkage ratio of those data. Fig-
ure 4 shows the distribution graph of shrinkage ratio, where it is
plot by actual and projection distance of randomly selected 500
samples.
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Fig. 4 Distribution of shrinkage ratio

In average, each object is shrunk to approximately 53% and
the standard deviationσ is about 0.15. Thus, we can say that
it is safe to expand the projection distance value up to twice the
value. However, the proposed method might be slightly danger-
ous as not all objects have the same shrinkage ratio. The shrink-
age ratio depends on the data and pivot used. Thus, there are
some objects that shrink quite largely, and there are some that
just slightly shrink. This can be proved from the maximum and
minimum value of shrinkage ratio which is 0.97 and 0.12, re-
spectively. Thus, a method to use expanded projection distance is

proposed. The expand ratio of projected distance is given by

expand=
1

av + ασ
,

whereav, σ andα are the average and standard deviation and
multiplier forσ respectively.

There are mainly two places that we use expanded projection
distance, during the search in inner node and leaf node. As de-
scribed in section 3.3, in conventional similarity search for R-
tree, when the search is in a leaf node, it calculates the projection
distance to the object that is in the leaf node. If the distance is
smaller than the search range, the search range value is updated
to the distance value. Here, in conventional method, we compare
the search range with projection distance. However, in this paper,
we expand the value of projection distance by multiplying it with
expand ratio and compare it with search range. Similarly, when
the search is in an inner node, before insert the nodes that need to
visit, we expand the projection distance and compare with search
range. With this method, we can contract the search range faster
and reduce the number of distance computation.

6. Experiments

In this section, we report experiments using images data, which
is approximately 7 million 2D frequency spectrums of 64 dimen-
sion data extracted from about 2,900 videos. Randomly generated
data are not appropriate for nearest neighbor experiments because
in higher dimensional spaces, it is rare to find near data. There-
fore, we prepare 3 types of queries:near, middle, farwhich are
generated from randomly selected pairs from database with mix-
ing noise ratio of 10%, 20%, 30%, respectively. For example, a
near queryq is a weighted sum of randomly selected datax andy
from database with weight 10% and 90%, respectively. We pre-
pare 100 queries for each noise level. The experimental result
shows the average of these 300 queries.

Table 1 illustrates the computer environment used.

Table 1 The SPEC of the PC used in Experiment

CPU Intel(R) Core(TM) i7-3770
3.40GHz

Memory 16GBytes

Table 2 shows the experimental results using the proposed
method with 8 projection dimension of S-Map.α, Expnd shows
the expand ratio of projected distance, Dist shows the expand
value of project distance, Nodes shows the number of nodes vis-
ited, Dist shows the number of distance computation, Time shows
the searching time in millisecond, and Prec shows the searching
precision in %. The value in table 2 shows the average per query.
The first line, which the expand ratio value is 1, in the table shows
the results of conventional method.

Table 2 Experimental Result

α Expnd Nodes Dist Time Prec
– 1 9352 351992 37 100

1.50 1.32 6318 114294 22 99
1.25 1.39 5741 92074 20 98
1.00 1.47 5178 73501 17 96
0.75 1.56 4658 57873 15 93
0.50 1.65 4211 46286 13 90
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7. Conclusions

From the experiments, we confirmed that the run time is
improved by using the proposed method, but, the precision is
slightly degraded. As the expand ratio value increases, the num-
ber of distance computation reduced and the searching time be-
comes faster. However, the precision dropped. From Table 2, we
can conclude that, for 8 projection dimension S-Map, expanding
projection distance by 1.65 times is the optimal way, as we are
able to search with 3 times higher speed while maintaining 90%
of the precision as compared to conventional method.

In the experiments we reported, we only use images data as
experimental data. Therefore, we should consider using other
kind of data such as music and colors too. Additionally, More-
over, besides S-Map, we should also consider applying the pro-
pose method with other dimension reduction techniques, such as
Sketch.
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