複素対称問題向きへのE-SSOR前処理の拡張

小玉 捷平¹ 藤野 清次² 岩里 洸介³

概要:反復法を用いて複素連立一次方程式 Cz = bの数値解を効率的に求めることを考える.外部散乱波 問題のような Helmholtz 方程式の問題では係数行列 C が複素数の行列要素を持つ.一般に,複素数の四則 演算に要する計算量は実数のそれに比べて非常に多い.一方,係数行列が実対称行列のとき,E-SSOR 前 処理は他の不完全分解型の前処理よりも計算量を低く抑えられる.本論文では,前処理行列 M の固有値 をシフトさせることにより,E-SSOR 前処理を複素対称問題向けに拡張したシフト付き E-SSOR 前処理を 提案する.数値実験を通じて他の前処理と収束性を比較し,提案法が優れていることを明らかにする.

キーワード: Eisenstat-SSOR,前処理,複素対称問題

Extension of E-SSOR preconditioning suited to complex symmetric problem

Abstract: We consider efficient numerical solutions of complex linear systems as the Helmholtz equations in the external scattering problems. In case of complex problems, the total amount of floating-point operations increases fairly compared with that of real problems. Accordingly it is crucial to choose optimally the preconditioning technique for the above complex problem. Therefore, we extend the so-called Eisenstat-SSOR preconditioning to be robust and efficient for the Helmholtz equations. Through numerical experiments, we verify the efficiency of the modified complex E-SSOR preconditioning.

Keywords: Eisenstat-SSOR, Preconditioning, Complex symmetric problem

1. はじめに

解くべき複素連立一次方程式を

$$C\boldsymbol{z} = \boldsymbol{b} \tag{1}$$

とする.ただし, $C \in \mathbb{C}^{N \times N}$ を複素対称行列, $z \in \mathbb{C}^{N}$ を 複素解ベクトル, $b \in \mathbb{C}^{N}$ を複素右辺ベクトルとする.この 方程式に対する数値解法として反復法がよく用いられる. 外部散乱波問題のような Helmholtz 方程式の問題では係数 行列Cは複素数の行列要素を持つ.複素数の四則演算に要 する計算量は実数のそれに比べて非常に多いので,係数行 列が実数対称行列のときより収束までの時間が長い.した

³ 九州大学大学院システム情報学府情報学専攻 Graduate School of Information Science and Electrical Engineering, Kyushu University がって,反復法の収束性の改善と計算量の削減は重要な課題である.反復法は前処理によって大幅に反復回数を削減 出来る[11].しかし,前処理は反復1回当たりの計算量が 増加するため,場合によっては収束までの時間がそれ程減 らないことがある.E-SSOR前処理は,他の不完全分解型 の前処理よりも計算量が少ないため,実対称行列である問 題に対してかなりの改善効果があり,複素数の場合も有望 であると思われる.

一方,係数行列が複素対称行列のとき,シフト付き IC 分解が非常に有用である.シフト付き IC 分解では,シ フト量 α と呼ばれるパラメータを導入し,前処理行列を $A + \alpha i I = U^{T}U - R$ と置いた.この処置により,元の行 列の固有値分布を実軸付近から遠ざけ,元の IC 分解の収 束性が改善されることが明らかにされた.

本論文では,前処理行列 M にシフト量を付加して, E-SSOR 前処理を複素対称問題向けに拡張した3種類のシフト付き E-SSOR 前処理を提案する.数値実験を通して,提 案法の収束性が優れていることを明らかにする.

¹ 九州大学工学部電気情報工学科 Department of Electrical Engineering and Computer Science, School of Engineering, Kyushu University

² 九州大学情報基盤研究開発センター Research Institute for Information Technology, Kyushu University

本論文の構成は以下の通りである.第2節で,従来の複 素対称行列用前処理について概説する.第3節で,3種類 のシフト付き E-SSOR 前処理について詳しく記述する.第 4節で,数値実験を通して,3種類のシフト付き E-SSOR 前処理の性能を評価し,改善効果を検証する.最後に,第 5節でまとめを行う.

2. 従来の複素対称行列用前処理

2.1 E-SSOR 前処理

複素連立一次方程式

$$C\boldsymbol{z} = \boldsymbol{b} \tag{2}$$

において,行列Cを

$$C = L + D + U \tag{3}$$

と分離する.ただし, $C \in \mathbb{C}^{N \times N}$ を複素対称行列, $z \in \mathbb{C}^{N}$ を複素解ベクトル, $b \in \mathbb{C}^{N}$ を複素右辺ベクトルとする. また,L,D,Uは,行列Cの狭義複素下三角行列,複素 対角行列,狭義複素上三角行列を各々意味し,行列の上付 き添字 T は行列の転置を意味する.Cは複素対称行列であ るため,狭義複素上三角行列Uは L^{T} である.SSOR前処 理では,緩和係数と呼ぶ実数 ω を対角項に掛け,複素前処 理行列Mを次式で与える.

$$M = (L + D/\omega)(D/\omega)^{-1}(L^{\rm T} + D/\omega).$$
(4)

このとき,(2)式は以下のように変換される.

$$(D/\omega)(L+D/\omega)^{-1}C(L^{\mathrm{T}}+D/\omega)^{-1}(L^{\mathrm{T}}+D/\omega)\boldsymbol{z}$$
$$= (D/\omega)(L+D/\omega)^{-1}\boldsymbol{b}$$
(5)

前処理後の複素係数行列 \tilde{C} ,複素解ベクトル \tilde{z} ,複素残差 ベクトル \tilde{r} は各々

$$\tilde{C} = (D/\omega)(L + D\omega)^{-1}C(L^{\mathrm{T}} + D/\omega)^{-1},$$
 (6)

$$\tilde{\boldsymbol{z}} = (L^{\mathrm{T}} + D/\omega)\boldsymbol{z},\tag{7}$$

$$\tilde{\boldsymbol{r}} = (D/\omega)(L + D/\omega)^{-1}\boldsymbol{r}$$
(8)

と表される.このとき,前処理後の複素係数行列 \tilde{C} を

$$\tilde{C} = (D/\omega)(L + D/\omega)^{-1}C(L^{T} + D/\omega)^{-1}$$

= $(D/\omega)((L^{T} + D/\omega)^{-1} + (L + D/\omega)^{-1} \times (I + (1 - 2/\omega)D(L^{T} + D/\omega)^{-1}))$ (9)

と式変形すると,前処理後の複素係数行列 \tilde{C} と複素ベクト ルvの積 $\tilde{C}v$ を次の4ステップで計算することで計算量を 削減できる[1][3].

1.
$$\boldsymbol{y} = (L^{\mathrm{T}} + D/\omega)^{-1} \boldsymbol{v}$$
 (10)

2. $\boldsymbol{u} = \boldsymbol{v} + (1 - 2/\omega)D\boldsymbol{y}$ (11)

3.
$$\boldsymbol{w} = (L + D/\omega)^{-1} \boldsymbol{u}$$
 (12)

4. $\tilde{C}\boldsymbol{v} = (D/\omega)(\boldsymbol{y} + \boldsymbol{w})$ (13)

この前処理を従来型 E-SSOR 前処理と呼ぶ.

2.2 CSIC(Complex Shift IC) 分解とシフト処理

ここでは, 閾値 (tolerance) による不完全コレスキー分 解 (IC(tol) 分解) の改良である複素シフトつき IC 分解 (Complex Shifted IC 分解:以後, CSIC 分解と略す) につ いて述べる.

一般に,係数行列が実対称行列のとき,IC 分解は上三角 行列の対角要素の計算過程で平方根の中の値が負になり計 算が中断することが時々起こるが[8][9],複素対称行列の 場合このような中断は起こり難い.しかしながら,行列の 固有値が左半平面に存在する場合,不完全な分解のため, 前処理後の行列の最小固有値が原点に接近し,複素反復法 の収束性を悪化させる場合が起こる.図1に,前処理の前 後の行列の固有値分布の変化の模式図を示す.閾値による IC 分解では,前処理後の行列の固有値分布は点(1,0)に 接近するが[2],固有値の中には原点に急接近する場合があ り,反復法の収束性が悪化する.

図 1 前処理の前 (黒丸) 後 (白丸) の行列の固有値分布の変化の模 式図.

そこで, CSIC 分解と呼ばれる, 前処理後の行列の最小 固有値が原点に接近することを防止する IC 分解が提案さ れた [6] [7].この方法では分解前に係数行列の対角項に一 定量の複素数を加えることで, あらかじめ係数行列の固有 値分布を実軸付近から遠ざけ, IC 分解を適用する.図 2 は予め係数行列の固有値分布を実軸上付近から遠ざけるこ とを表した模式図である.この場合のシフト量は負の値で ある.このようなシフト処理により, 固有値の原点への接 近を防止できると思われる.

図 2 負の方向にシフトしたときの係数行列の固有値分布の変化の 模式図.

複素行列に対する IC(tol) 分解と CSIC 分解を行列表現

で表すと以下のようになる.ただし,Rは分解の不完全さ を形式的に表す行列,Iは単位行列,iは虚数単位, α は CSIC 分解でのシフト量を意味する実数パラメータとする.

$$C = LL^{\mathrm{T}} - R, \tag{14}$$

$$C + \alpha \mathbf{i}I = LL^{\mathrm{T}} - R. \tag{15}$$

式 (14) と式 (15) における下三角行列 $L = [l_{ij}]$ の具体的な 要素の計算は,各行 i = 1, 2, ..., n に対して,以下に示す 手順で行う.ただし,要素 a_{ij} は係数行列 C の要素を,* 印つきの a_{ij}^* は分解過程において作業用として使う配列の 要素を各々表し,tol は棄却判定に用いる正の定数とする.

[下三角行列
$$L$$
 (=[l_{ij}])の計算手順]
 $a_{ii}^* = \begin{cases} a_{ii} & (IC 分解での対角項の設定) \\ a_{ii} + \alpha i & (CSIC 分解での対角項の設定) \end{cases}$

$$a_{ij}^* = a_{ij} - \sum_{k=1}^{i-1} l_{ki} l_{kj},$$

 $l_{ii} = \sqrt{a_{ii}^* - \sum_{k=1}^{i-1} l_{ki}^2},$
 $l_{ij} = \begin{cases} a_{ij}^* / l_{ii} & |a_{ij}^*| \ge \text{tol obset} \\ 0 & |a_{ij}^*| < \text{tol obset} \\ (j = i + 1, \dots, n). \end{cases}$

CSIC 分解のアルゴリズムを以下に示す.要素 $\overline{a_{ii}}$, $\overline{a_{jj}}$ は行列 C の第 i, j 行の対角要素に各々対応し,分解過程 でに更新される.一方, a_{ij}^* は最終的に下三角行列 L の非 対角要素 l_{ij} になる要素を表す. α はシフト量を表す実数 パラメータ, tol は要素 l_{ij} の棄却判定用閾値を意味する.

for
$$i = 1, \dots, n$$

 $\overline{a_{ii}} = a_{ii} + \alpha i$
end for
for $i = 1, \dots, n$
for $j = i + 1, \dots, n$
 $a_{ij}^* = a_{ij}$
end for
for $k = 1, \dots, i - 1$
for $j = i + 1, \dots, n$
 $a_{ij}^* = a_{ij}^* - l_{ki}l_{kj}$ (非対角項の計算)
end for
end for
for $j = i + 1, \dots, n$
if $|a_{ij}^*| \le \text{tol then}$
 $a_{ij}^* = 0$ (閾値より小さい要素を棄却)
end if
end for
 $l_{ii} = \sqrt{\overline{a_{ii}}}$ (対角項を求める)
for $j = i + 1, \dots, n$
 $l_{ij} = a_{ij}^*/l_{ii}$ (非対角項を求める)
 $\overline{a_{jj}} = \overline{a_{jj}} - l_{ij}^2$ (対角項の計算)
end for
end for

3. 3 種類のシフト付き E-SSOR 前処理

3.1 対角シフト付き E-SSOR 前処理_v1
 複素前処理行列 M_{DS1} を以下のように定義する.

$$M_{\rm DS1} = (L + Di/\omega)(D/\omega)^{-1}(L^{\rm T} + Di/\omega).$$
(16)

式中のiは虚数単位を意味し, $i^2 = -1$ である.このとき, (2)式は以下のように変換される.

$$(D/\omega)(L + Di/\omega)^{-1}C(L^{\mathrm{T}} + Di/\omega)^{-1}(L^{\mathrm{T}} + Di/\omega)z$$
$$= (D/\omega)(L + Di/\omega)^{-1}b$$
(17)

前処理後の複素係数行列 $ilde{C}$,複素解ベクトル $ilde{z}$,複素残差 ベクトル $ilde{r}$ は各々

$$\tilde{C} = (D/\omega)(L + D\mathbf{i}/\omega)^{-1}C(L^{\mathrm{T}} + D\mathbf{i}/\omega)^{-1}, \qquad (18)$$

$$\tilde{\boldsymbol{z}} = (L^{\mathrm{T}} + D\boldsymbol{i}/\omega)\boldsymbol{z},\tag{19}$$

$$\tilde{\boldsymbol{r}} = (D/\omega)(L + D\boldsymbol{i}/\omega)^{-1}\boldsymbol{r}$$
(20)

と表される.このとき,前処理後の複素係数行列 \tilde{C} を

$$\tilde{C} = (D/\omega)(L + Di/\omega)^{-1}C(L^{T} + Di/\omega)^{-1}$$

= $(D/\omega)((L^{T} + Di/\omega)^{-1} + (L + Di/\omega)^{-1}$
 $\times (I + (1 - 2i/\omega)D(L^{T} + Di/\omega)^{-1}))$ (21)

と式の変形をすると,複素係数行列 \tilde{C} と複素ベクトルvの 積 $\tilde{C}v$ を次の4ステップで計算することで計算量を削減で きる.

1.
$$\boldsymbol{y} = (L^{\mathrm{T}} + D\boldsymbol{i}/\omega)^{-1}\boldsymbol{v}$$

2. $\boldsymbol{u} = \boldsymbol{v} + (1 - 2\boldsymbol{i}/\omega)D\boldsymbol{y}$
3. $\boldsymbol{w} = (L + D\boldsymbol{i}/\omega)^{-1}\boldsymbol{u}$
4. $\tilde{C}\boldsymbol{v} = (D/\omega)(\boldsymbol{y} + \boldsymbol{w})$

$$(22)$$

 3.2 対角シフト付き E-SSOR 前処理₋v2 複素前処理行列 M_{DS2} を以下のように定義する.

$$M_{\rm DS2} = \{L + (D + \alpha i I)/\omega\} (D/\omega)^{-1} \{L^{\rm T} + (D + \alpha i I)/\omega\}$$
(23)

 α はシフト量を表す実数パラメーターである.このとき, (2)式は以下のように変換される.

$$(D/\omega)\{L + (D + \alpha iI)/\omega\}^{-1}C\{L^{\mathrm{T}} + (D + \alpha iI)/\omega\}^{-1}$$
$$\{L^{\mathrm{T}} + (D + \alpha iI)/\omega\}z$$
$$= (D/\omega)\{L + (D + \alpha iI)/\omega\}^{-1}b$$
(24)

前処理後の複素係数行列 \tilde{C} ,複素解ベクトル \tilde{z} ,複素残差 ベクトル \tilde{r} は各々

$$\tilde{C} = (D/\omega) \{ L + (D + \alpha i I)/\omega \})^{-1} C \{ L^{\mathrm{T}} + (D + \alpha i I)/\omega \}^{-1}$$

$$\tilde{\boldsymbol{z}} = \{ \boldsymbol{L}^{\mathrm{T}} + (\boldsymbol{D} + \alpha \boldsymbol{i} \boldsymbol{I}) / \omega \} \boldsymbol{z}.$$
⁽²⁵⁾

$$\tilde{\boldsymbol{r}} = (D/\omega) \{ L + (D + \alpha i I)/\omega \}^{-1} \boldsymbol{r}$$
(27)

 $(\mathbf{n}\mathbf{r})$

と表される.このとき,前処理後の複素係数行列 \tilde{C} を

$$\tilde{C} = (D/\omega) \{ L + (D + \alpha i I)/\omega \}^{-1} C \{ L^{\mathrm{T}} + (D + \alpha i I)/\omega \}^{-1} = (D/\omega) (\{ L^{\mathrm{T}} + (D + \alpha i I)/\omega \}^{-1} + \{ L + (D + \alpha i I)/\omega \}^{-1} \times (I - 2D/\omega - 2\alpha i/\omega + D))$$
(28)

と式の変形をすると, 複素係数行列 \tilde{C} と複素ベクトル v の 積 $\tilde{C}v$ を次の 4 ステップで計算することで計算量を削減で きる [1][3].

1.
$$\boldsymbol{y} = \{L^{\mathrm{T}} + (D + \alpha i I)/\omega\}^{-1}\boldsymbol{v}$$

2. $\boldsymbol{u} = \boldsymbol{v} + (D - 2\alpha i I/\omega - 2D/\omega)\boldsymbol{y}$
3. $\boldsymbol{w} = \{L + (D + \alpha i I)/\omega\}^{-1}\boldsymbol{u}$
4. $\tilde{C}\boldsymbol{v} = (D/\omega)(\boldsymbol{y} + \boldsymbol{w})$
(29)

3.3 全体シフト付き E-SSOR 前処理 複素前処理行列を以下のように定義する.

$$M_{\rm CS} = (L\mathbf{i} + D\mathbf{i}/\omega)(D/\omega)^{-1}(L^{\rm T}\mathbf{i} + D\mathbf{i}/\omega).$$
(30)

このとき,前処理後の複素係数行列 \tilde{C} ,複素解ベクトル \tilde{z} , 複素残差ベクトル \tilde{r} を各々

$$\tilde{C} = (D/\omega)(L\mathbf{i} + D\mathbf{i}/\omega)^{-1}C(L^{\mathrm{T}}\mathbf{i} + D\mathbf{i}/\omega)^{-1}, \quad (31)$$

$$\tilde{\boldsymbol{z}} = (L^{\mathrm{T}}\boldsymbol{i} + D\boldsymbol{i}/\omega)\boldsymbol{z},\tag{32}$$

$$\tilde{\boldsymbol{r}} = (D/\omega)(L\boldsymbol{i} + D\boldsymbol{i}/\omega)^{-1}\boldsymbol{r}$$
(33)

と定義すると,(2)式は以下のように変換される.

$$\tilde{C}\tilde{\boldsymbol{z}} = (D/\omega)(L\boldsymbol{i} + D\boldsymbol{i}/\omega)^{-1}\boldsymbol{b}$$
(34)

このとき,前処理後の複素係数行列 \tilde{C} を

$$\tilde{C} = (D/\omega)(Li + Di/\omega)^{-1}C(L^{\mathrm{T}}i + Di/\omega)^{-1}$$

$$= (D/\omega)(-i(L^{\mathrm{T}}i + Di/\omega)^{-1} + (Li + Di/\omega)^{-1}$$

$$\times (-iI + (1 - 2/\omega)D(L^{\mathrm{T}}i + Di/\omega)^{-1})) \quad (35)$$

と式変形すると,前処理後の複素係数行列 \tilde{C} と複素ベクト ルvの積 $\tilde{C}v$ を次の4ステップで計算することで計算量を 削減できる.

1.
$$\boldsymbol{y} = -i(L^{\mathrm{T}}\boldsymbol{i} + D\boldsymbol{i}/\omega)^{-1}\boldsymbol{v}$$

2. $\boldsymbol{u} = -i\boldsymbol{v} + (1-2/\omega)D\boldsymbol{i}\boldsymbol{y}$
3. $\boldsymbol{w} = (L\boldsymbol{i} + D\boldsymbol{i}/\omega)^{-1}\boldsymbol{u}$
4. $\tilde{C}\boldsymbol{v} = (D/\omega)(\boldsymbol{y} + \boldsymbol{w})$
(36)

4. 数値実験

4.1 計算機環境と計算条件

計算機環境と計算条件を以下に示す.計算機は CX400 (CPU:CPU:Intex Xeon E5-2680,クロック周波数:2.7GHz, OS: Red Hat Linux Enterprise 6.1)を使用した.プログ ラムは Fortran90, コンパイラは Fujitsu Fortran Driver version 1.2.0.を使用した.最適化オプションは "-Kfast"

表 1 テスト行列の特徴

 Table 1
 Characteristics of test matrix.

行列	次元数	非零	平均非零	
		要素数	要素数	
dtn_scatter_2pi	123,000	$2,\!293,\!464$	18.65	
$dtn_scatter_55$	123,000	$2,\!293,\!464$	18.65	

を用いた.計算はすべて倍精度浮動小数点演算で行い,時間計測には時間計測関数 "getrusage"を用いた.収束判定 条件は相対残差の2ノルム: $||r_{k+1}||_2/||r_0||_2 \le 10^{-9}$,初 期近似解 x_0 はすべて0,最大反復回数は100,000回とし た.解法はCOCG法を用いた.前処理はスケーリングな し,対角化スケーリング,絶対対角化スケーリングの3種 類と従来版 E-SSOR,3種類のシフト付き E-SSORの4種 類の前処理を組み合わせた.また,IC(0)分解つき COCG 法での実験を行い,E-SSOR前処理との収束性を比較した. 緩和係数 ω は-1.8,-1.5,-1.2,-1.0,-0.5,0.5,1.0,1.2, 1.5,1.8 の10通り変化させた.残差ベクトル \tilde{r} の変換に よる余分な計算を除くために,反復5回ごとに収束判定は 1度だけ行った.

4.2 テスト行列の特徴

表1にテスト行列の特徴を示す.これらの行列は物体回 りの散乱波の様子を模擬する問題から得られ,Helmholtz 方程式に対する複素対称行列として記述される.行列名の 最後尾の数字は周波数を表し,その値が2πと55であるこ とを意味する.

4.3 実験結果

表 2 に 5 種類の前処理付き COCG 法の収束性を示す. 表中では,対角シフト付き E-SSOR 前処理_v1,同_v2 を対 角行列 *D* をシフトした前処理として "DS_v1,同_v2" と表 記する.また,全体シフト付き E-SSOR 前処理を複素係数 行列 *C* 全体をシフトした前処理として "CS" と表記する. 表 2 の結果から以下のことが分かる.

- (1) 波数の大きさに関わらず,行列 dtn_scatter_2pi と行列 dtn_scatter_55 の両方に対して,全体シフト付き E-SSOR 前処理が最も速く収束した.
- (2)特に,行列dtn_scatter_2piに対して,IC(0)分解が前処理なしのときの0.93倍の反復時間で収束したのに対して,全体シフト付き E-SSOR 前処理は0.69倍の反復時間で速く収束し,他の前処理よりも優れた収束性を示した.
- (3)行列のスケーリングは,絶対対角化スケーリングより も通常の対角化スケーリングを適用したケースの方が 少ない反復回数で収束した.

表 2 5 種類の前処理付き COCG 法の収束性

 Table 2
 The convergence rate of COCG method with five kinds of preconditionings.

(a) matrix : dtn_scatter_2pi									
前処理	対角化	シフト	反復	反復	比	平均	比		
		量	回数	時間		時間			
				[sec.]		[msec.]			
なし	なし		2,623	19.773	1.00	7.538	1.00		
	対角		2,439	18.485	0.93	7.579	1.01		
	絶対対角		2,475	19.784	1.00	7.994	1.06		
IC(0)			1,035	18.360	0.93	17.739	2.35		
従来型	なし	1.0 -	1,050	14.325	0.72	13.643	1.81		
	対角	1.2 -	1,045	13.988	0.71	13.386	1.78		
	絶対対角	1.0 -	$1,\!050$	14.043	0.71	13.374	1.77		
DS_v1		-0.5 -	2,995	40.716	2.06	13.595	1.80		
DS_v2	なし	1.0 -	1,050	14.238	0.72	13.560	1.80		
	対角	1.2 -	1,045	14.353	0.73	13.735	1.82		
	絶対対角	1.0 -	1,050	14.297	0.72	13.616	1.81		
\mathbf{CS}	なし	$1.2 \ 0.0075$	1,045	13.955	0.71	13.354	1.77		
	対角	1.2 0.075	1,020	13.651	0.69	13.383	1.78		
	絶対対角	1.2 0.01	1,025	13.788	0.70	13.452	1.78		
(b) matrix : dtn_scatter_55									
前勿 理									
的处理	対角化	シフト	反復	反復	比	平均	比		
前处理	対角化	シフト 量	反復 回数	反復 時間	比	平均 時間	比		
HI ZUII	対角化	シフト 量	反復 回数	反復 時間 [sec.]	比	平均 時間 [msec.]	比		
前処 <u>年</u> なし	対角化 なし	シフト 量 	反復 回数 4,735	反復 時間 [sec.] 35.682	比 1.00	平均 時間 [msec.] 7.536	比 1.00		
前処 <u>年</u> なし	対角化 なし 対角	シフト 量 	反復 回数 4,735 4,765	反復 時間 [sec.] 35.682 35.983	比 1.00 1.01	平均 時間 [msec.] 7.536 7.552	比 1.00 1.00		
前処理 なし	対角化 なし 対角 絶対対角	シフト 量 	反復 回数 4,735 4,765 4,698	反復 時間 [sec.] 35.682 35.983 37.703	比 1.00 1.01 1.06	平均 時間 [msec.] 7.536 7.552 8.025	比 1.00 1.00 1.06		
前254 なし IC(0)	対角化 なし 対角 絶対対角	シフト 量 	反復 回数 4,735 4,765 4,698 2,077	反復 時間 [sec.] 35.682 35.983 37.703 36.854	比 1.00 1.01 1.06 1.03	平均 時間 [msec.] 7.536 7.552 8.025 17.744	比 1.00 1.06 2.35		
前処理 なし IC(0) 従来型	対角化 なし 対角 絶対対角 なし	シフト 量 1.0 -	反復 回数 4,735 4,698 2,077 2,145	反復 時間 [sec.] 35.682 35.983 37.703 36.854 28.592	比 1.00 1.01 1.06 1.03 0.80	平均 時間 [msec.] 7.536 7.552 8.025 17.744 13.330	比 1.00 1.00 2.35 1.77		
前近 なし IC(0) 従来型	対角化 なし 対角 絶対対角 なし なし 対角	シフト 量 1.0 - 1.2 -	反復 回数 4,735 4,765 4,698 2,077 2,145 2,035	反復 時間 [sec.] 35.682 35.983 37.703 36.854 28.592 27.092	比 1.00 1.01 1.06 1.03 0.80 0.76	平均 時間 [msec.] 7.536 7.552 8.025 17.744 13.330 13.313	比 1.00 1.06 2.35 1.77 1.77		
前返理 なし IC(0) 従来型	対角化 なし 対角 絶対対角 なし 対角 総対対角	シフト 量 1.0 - 1.2 - 1.2 -	反復 回数 4,735 4,765 4,698 2,077 2,145 2,035 2,085	反復 時間 [sec.] 35.682 35.983 37.703 36.854 28.592 27.092 27.921	比 1.00 1.01 1.06 1.03 0.80 0.76 0.78	平均 時間 [msec.] 7.552 8.025 17.744 13.330 13.313 13.391	比 1.00 1.06 2.35 1.77 1.77 1.78		
前返理 なし IC(0) 従来型 DS_v1	対角化 なし 対角 絶対対角 なし 対角 絶対対角	シフト 量 1.0 - 1.2 - 1.2 - -0.5 -	反復 回数 4,735 4,765 4,698 2,077 2,145 2,035 2,085 4,855	反復 時間 [sec.] 35.682 35.983 37.703 36.854 28.592 27.092 27.921 67.478	比 1.00 1.01 1.06 1.03 0.80 0.76 0.78 1.89	平均 時間 [msec.] 7.552 8.025 17.744 13.330 13.313 13.391 13.899	比 1.00 1.06 2.35 1.77 1.77 1.78 1.84		
なし IC(0) 従来型 DS_v1 DS_v2	対角化 なし 対角 絶対対角 なし 対角 絶対対角 なし	シフト 量 1.0 - 1.2 - 1.2 - -0.5 - 1.2 -	反復 回数 4,735 4,765 4,698 2,077 2,145 2,035 2,085 4,855 2,130	反復 時間 [sec.] 35.682 35.983 37.703 36.854 28.592 27.092 27.921 67.478 28.770	Et 1.00 1.01 1.06 1.03 0.80 0.76 0.78 1.89 0.81	平均 時間 [msec.] 7.552 8.025 17.744 13.330 13.313 13.391 13.899 13.507	比 1.00 1.06 2.35 1.77 1.78 1.84 1.79		
なし IC(0) 従来型 DS_v1 DS_v2	対角化 なし 対角 対角 なし な 対角 対角 なし よう角 対角 なし な 対 角 対 対 角 なし な り の 対 の の の の の の の の の の の の の の の の の	シフト 量 1.0 - 1.2 - 1.2 - 1.2 - 1.2 - 1.2 - 1.2 -	反復 回数 4,735 4,765 4,698 2,077 2,145 2,035 2,085 4,855 2,130 2,035	反復 時間 [sec.] 35.682 35.983 37.703 36.854 28.592 27.092 27.921 67.478 28.770 27.688	Et 1.00 1.01 1.03 0.80 0.76 0.78 1.89 0.81 0.78	平均 時間 [msec.] 7.552 8.025 17.744 13.330 13.313 13.391 13.899 13.507 13.606	比 1.00 1.00 1.06 2.35 1.77 1.77 1.78 1.84 1.79 1.81		
なし IC(0) 従来型 DS_v1 DS_v2	対角化 なし 対絶対対角 なり角 総対対角 なり角 なり角 総対対角	シフト 量 1.0 - 1.2 - 1.2 - 1.2 - 1.2 - 1.2 - 1.2 - 1.2 - 1.0 -	反復 回数 4,735 4,765 2,077 2,145 2,035 2,035 2,130 2,035 2,115	反復 時間 [sec.] 35.682 35.983 37.703 36.854 28.592 27.092 27.092 27.921 67.478 28.770 27.688 28.738	Et 1.00 1.01 1.06 1.03 0.80 0.76 0.78 1.89 0.81 0.78 0.81	平均 時間 [msec.] 7.552 8.025 17.744 13.330 13.313 13.391 13.899 13.507 13.606 13.588	比 1.00 1.00 1.06 2.35 1.77 1.78 1.84 1.79 1.81 1.80		
なし IC(0) 従来型 DS_v1 DS_v2 CS	対角化 な 対 絶 対 約 対 対 角 な 対 絶 対 対 角 の 、 対 対 対 角 の 、 対 対 対 角 の 、 の 角 の の の の の の の の の の の の の の の	シフト 量 1.0 - 1.2 -	反復 回数 4,735 4,765 4,698 2,077 2,145 2,035 2,035 2,130 2,035 2,115 2,095	反復 時間 [sec.] 35.682 35.983 37.703 36.854 28.592 27.092 27.921 67.478 28.770 27.688 28.738 28.738	比 1.00 1.01 1.06 0.76 0.78 1.89 0.81 0.78 0.81 0.78	平均 時間 [msec.] 7.552 8.025 17.744 13.330 13.313 13.391 13.899 13.507 13.606 13.588 13.293	££ 1.00 1.06 2.35 1.77 1.78 1.84 1.79 1.81 1.80 1.76		
なし IC(0) 従来型 DS_v1 DS_v2 CS	対角化 な 対 絶 対 対 対 始 対 対 角 な し の 角 対 対 角 の 対 の 角 の 対 の 角 の の の の の の の	シフト 量 1.0 - 1.2 - 1.2 - 1.2 - 1.2 - 1.2 - 1.2 - 1.2 - 1.2 0.01 1.2 -0.25	反復 回数 4,735 4,698 2,077 2,145 2,035 2,085 2,130 2,035 2,115 2,095 1,980	反復 時間 [sec.] 35.682 35.983 37.703 36.854 28.592 27.921 67.478 28.770 27.688 28.738 28.738 27.848 26.443	比 1.00 1.01 1.06 0.78 0.80 0.78 1.89 0.81 0.78 0.81 0.78 0.81	平均 時間 [msec.] 7.536 7.552 8.025 17.744 13.330 13.391 13.391 13.899 13.507 13.606 13.588 13.293 13.355	比 1.00 1.00 1.00 2.35 1.77 1.77 1.78 1.84 1.79 1.81 1.80 1.76 1.77		

5. まとめ

波動現象の波数の大きさに関わらず,全体シフト付き E-SSOR 前処理が最速で収束し,収束性が優れていること がわかった.

参考文献

- Chan, T. F., van der Vorst, H. A.: Approximate and Incomplete Factorizations, in D.E. Keyes, A. Samed and V. Venkatakrishnan (eds.), Parallel Numerical Algorithms, 1997.
- [2] Dongarra, J., Duff, I., Sorensen, D., van der Vorst, H. A.: Numerical Linear Algebra for High-Performance Computers, SIAM, Philadelphia, 1998.
- [3] Eisenstat, S. C.: Efficient implementation of a class of preconditioned conjugate gradient methods, SIAM J. Sci. Stat. Comput., Vol.2, No.1, pp.1-4, 1981.
- [4] Fujino, S., Fujiwara, M., Yoshida, M.: A proposal of preconditioned BiCGSafe method with safe convergence, Proc. of The 17th IMACS World Congress on Scientific Computation, Appl. Math. Simul., CD-ROM, Paris, France, 2005.
- [5] 伊東千晶,岩里洸介,村上啓一,藤野清次:Cache-Cache(カシュカシュ) Elements 並列化手法の提案,日本計算工学 会論文集,Vol.2014,No.20140013,2014.
- [6] Magolu, M. M. M.: Preconditioning of discrete Helmholtz operators perturbed by a diagonal complex matrix, *Commun. Numer. Meth. Engng*, Vol. 16, pp.801-817, 2000.
- [7] Magolu, M. M. M., Beauwens, R., Warzee, G.: Incomplete factorization-based preconditionings for solving the Helmholtz equation, *Int. J. Numer. Meth. Engrg.*, Vol. 50, pp.1077-1101, 2001.
- [8] 柿原正伸,藤野清次:構造解析で現れる線形方程式に対 する対角緩和つき準ロバスト ICCG 法の収束性評価,日 本計算工学会講演集,2004.
- [9] 柿原正伸,藤野清次:緩和係数 を自動決定する対角緩 和準ロバスト ICCG 法の収束性,情報処理学会論文誌, Vol.46, NO.SIG 4(ACS 9), pp.45-55, 2005.
- [10] 柿原正伸:対称行列に対するクリロフ部分空間法の不完 全分解前処理,九州大学大学院システム情報科学府情報 学専攻修士論文,2005.
- [11] Y. Saad: Iterative Methods for Sparse Linear Systems, 2nd Ed, SIAM, Philadelphia, 2003.
- [12] University of Florida Sparse Matrix Collection: http:// www.cise.ufl.edu/research/sparse/matrices/index.html