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Boolean Formula-Proof and Its Application to
Attribute-Based Identifications and Signatures

Hiroaki Anada1,2,a) Seiko Arita2,b) Kouichi Sakurai1,3,c)

Abstract: We propose a notion ofboolean formula-proof system ( f -proof)in the form of aΣ-protocol. Our f -proof
system is a generalization of the well-knownΣ-protocol of OR-proof system; that is, it treats any boolean formula (which
does not have a NOT-gate) instead of a single OR-gate. In addition, as is the case for usualΣ-protocol, ourf -proof system
is a proof of knowledge system; that is, it possesses a knowledge extractor that extracts a witness set that satisfies the
boolean formulaf . Next, we provide a construction of ourf -proof system from a givenΣ-protocol. Then, by combining
our f -proof system with a credential bundle scheme, we obtain an attribute-based identification scheme of proof of knowl-
edge type. It possesses a property of attribute-privacy and a feature that it can be constructed without pairings. Finally, by
applying the Fiat-Shamir Transform, we obtain an attribute-based signature scheme, which is secure in the random oracle
model.
我々はブール式証明システムの概念を Σ-プロトコルの形で提案する．我々のブール式証明システムはよく知られ
た OR-証明システムの一般化である．すなわち，単一の ORゲートに代わって（NOTゲートを持たない）任意の
ブール式を取り扱う．加えて，通常の Σ-プロトコルの場合と同じく，我々のブール式証明システムは知識の証明
システムである；すなわち，ブール式を満足する証拠の集合を抽出する知識抽出機を有する．次いで，我々は，与
えられた Σ-プロトコルから我々のブール式証明システムを構成する方法を与える．そして，我々のブール式証明
システムを証明書バンドルスキームと組み合わせることで，我々は知識の証明タイプの属性ベース認証スキームを
得る．それは属性プライバシーの性質及びペアリング無しで構成されうる特徴を有する．最後に，Fiat-Shamir変
換を適用することで，我々は属性ベース署名スキームを得る．それはランダムオラクルモデルで安全である．

1. Introduction

TheΣ-protocol [7], [8] is a proof system that allows a prover, in a
3-move, to convince a verifier that the prover knows an answer (that
is, a witness) of a hard problem instance. The knowledge is assured
by the presence of a knowledge extractor, which extracts the wit-
ness by employing the prover as a subroutine. In that sense, theΣ-
protocol is a proof of knowledge system. In addition, theΣ-protocol
is known to be a zero-knowledge proof system against honest ver-
ifiers. That is, after a whole interaction, an honest verifier knows
nothing but only the fact that the prover knows the witness. That
Σ-protocol, which has those distinguished properties, is concretely
realized as the Schnorr protocol [13] and the Guillou-Quisquater
protocol (which are the origin of theΣ-protocol).

An extended notion, theΣ-protocol of OR-proof, has been de-
veloped [8] and applied so as to achieve, for example, man-in-the-
middle security (Katz02). In the OR-proof, there are two instances
and a prover can convince a verifier that the prover knows a witness
of one instance, or another, or both.

In this paper, we propose and construct aΣ-protocol ofboolean

formula-proof (f -proof), which is a generalization of theΣ-protocol
of OR-proof. In ourΣ-protocol of f -proof, f is a boolean formula

1 Institute of Systems, Information Technologies and Nanotechnologies
(ISIT), Fukuoka SRP Center Building 7F, Momochihama 2-1-22, Sawara-
ku, Fukuoka, 814-0001, Japan

2 Graduate School of Information Security, Institute of Information Security,
2-14-1 Tsuruyacho, Kanagawa-ku, Yokohama, 221-0835, Japan

3 Graduate School and Faculty of Information Science and Electrical Engi-
neering, Kyushu University, Room 712, West Bldg. No.2, Moto-oka 744,
Nishi-ku, Fukuoka, 819-0395, Japan

a) anada@isit.or.jp
b) arita@iisec.ac.jp
c) sakurai@csce.kyushu-u.ac.jp

written in boolean variables and boolean connectives (AND gates
and OR gates). There is also a set of instances. Then a prover can
convince a verifier that the prover knows a set of witness (witness
set) that satisfies the formulaf . Here each boolean variable ap-
pearing inf take 1 or 0 according to whether the prover knows the
corresponding witness or not.

Our Σ-protocol of f -proof has interesting application to
attribute-based identification of proof of knowledge (ABID of PoK)

and attribute-based signatures (ABS).
Let us first remember the notion of ABID. Attribute-based iden-

tification (ABID) was introduced in [2]. In an ABID scheme, a
prover has credentials called attributes. On the other hand, a ver-
ifier maintains an access policy written as a boolean formula over
those attributes. Then, a verifier can identify that a prover possesses
a set of attributes that satisfies the verifier’s access policy.

Hence an ABID of PoK scheme is defined as an ABID scheme
with a knowledge extractorthat extracts a witness set that satisfies
the verifier’s access policy.

Is is notable that almost all attribute-based cryptographic primi-
tives so far (originated in [10], [14]) are constructed basecally with
linear secret sharing schemes (LSSS)([3]) and pairing maps ([6]).
Our approach is different from that construction.

1.1 Our Idea and Contributions
To construct aΣ-protocol if f -proof, we will look into the OR-

proof technique [8] and expand it so as to treat any boolean formula
(without negations), as follows.

First express a boolean formula (an access formula) as a binary
tree (an access tree); that is, with its inner nodes being AND gates
and OR gates and its leaf nodes being terms that map to attributes.
An verification equation ofΣ is assigned to each leaf node. Sup-
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pose that a challenge stringCha of Σ is given, and then assignCha
to the root node. If the root node is an AND gate, assign the same
string Cha to two children. Else if the root node is an OR gate,
divide Cha into two random stringsChaŁ andChaR which satisfy
Cha = ChaŁ ⊕ ChaR, and assignChaŁ andChaR to the left and
right children, respectively. Here⊕ means a bitwise exclusive-OR
operation. Then continue to apply this rule at each height, step by
step, until we reach to each leaf node. Then, basically, the OR-
proof technique assures we can either honestly executeΣ-protocol
Σ or executeΣ in a simulated way. Only when a set of attributes
satisfies the access tree the above procedure succeeds in satisfy-
ing verification equations for each leaf node. We call the above
procedureboolean formula-proof. The boolean formula-proof is a
natural, but non-trivial extension of the OR-proofΣ-protocol.

As our theoretical contribution, we provide aΣ-protocol of
boolean formula-proof,Σ f . Given a boolean formulaf without
negation and aΣ-protocolΣ, we generically constructΣ f so that
Σ f is aΣ-protocol to prove knowledge of a witness set that satisfies
f .

As our practical contribution, we provide ABID of PoK schemes
and ABS schemeswithout pairings. More precisely, As aΣ-
protocolΣ can be constructed without pairings (for example, the
case of Schnorr scheme [5], [13]), our generic construction re-
sults in a concrete boolean formula-proofΣ f without pairings, and
hence, an ABID of PoK scheme and an ABS scheme, without pair-
ings, whose security are in the random oracle model.

1.2 Related Work
The OR-proof is precisely explained in, for example, [8]. The

OR-proofs have applications such as achieving security against
man-in-the-middle adversary. Our boolean formula-proof can be
seen as a natural extension of the OR-proof.

ABID is introduced by Anada et al. in [2]. Then they pro-
vided a challenge-and-response construction of ABID scheme us-
ing attribute-based key encapsulation mechanism. In contrast, we
provide three move protocol with knowledge-extraction property.

1.3 Organization of this Paper
In Section 2, we prepair for the needed tools and notions. In

Section 3, we give a definiton aΣ-protocol of boolean formula-
proof. In Section 4, we describe the construction of ourΣ-protocol
of boolean formula-proof,Σ f . In Section 5, we modify ourΣ f into
a ABID of PoK scheme. In Section 7, we show how concretely our
ABIDofPoK is realized in discrete logarithm-setting and RSA set-
ting. In Section 6, we apply the Fiat-Shamir Transform to our our
ABIDofPoK scheme and obtain a ABS scheme. In Section 8, we
conclude our work in this paper.

2. Preliminaries

The security parameter is denoted byλ. When an algorithmA

with input a outputsz, we denote it asz ← A(a), or, because of
space limitation,A(a) → z. When A with input a and B with
input b interact with each other andB outputsz, we denote it as
z← ⟨A(a), B(b)⟩. WhenA has oracle-access toO, we denote it as
AO. WhenA has concurrent oracle-access ton oraclesO1, . . . ,On,
we denote it asAOi |ni=1. Here “concurrent” means thatA accesses to
oracles in arbitrarily interleaved order of messages.

2.1 Access Formula [10]
LetU = {att1, . . . ,attU } be an attribute universe. We must dis-

tinguish two cases: the case thatU is small (that is,|U| = U is
bounded by some polynomial inλ) and the case thatU is large
(that is,U is not necessarily bounded). We assume the small case
unless we state the large case explicitly.

Suppose that we are given an access policy as a boolean formula
f over variables{Xatt}att∈U (for example,f = Xatt1 ∧ ((Xatt2 ∧Xatt3)∨
Xatt4)). That is, each termXatt is a predicate which, on inputS ∈ 2U,
takes a boolean value according to whether att∈ S or not. Then the
boolean output off atS is evaluated according to boolean connec-
tives, that is, AND gates (∧-gates) or OR gates (∨-gates). Hencef
is a function: f : 2U → {1,0}. We call the boolean formulaf an
access formulaoverU.

In this paper, we do not consider NOT gates (¬), that is, we only
consider monotone boolean formulas*1.
2.1.1 Access Tree

We consider in this paper a finte binary treeT , that is, a tree
that has finite number of nodes and each non-leaf node has two
branches. For a treeT , let Nd(T ), rt(T ), Lf(T ), iNd(T ) and
tNd(T ) denote the set of all nodes, the root node, the set of all
leaf nodes the set of all inner nodes (that is, all nodes excluding
leaf nodes) and the set of all tree-nodes (that is, all nodes exclud-
ing the root node) inT , respectively. An access formulaf can
be represented by a finite binary treeT f . Each leaf node corre-
sponds to a termXatt in f in one-to-one way. Each inner node
represents an operator,∧-gate or∨-gate, in f . An attribute map
att(·) : Lf(T ) → U is defined, for lf ∈ Lf(T ), as att(lf) :=
(the attribute att of the termXatt).

If T is of height greater than 0,T has two subtrees whose root
nodes are two children of rt(T ). We denote the two subtrees by
Lsub(T ) and Rsub(T ), which mean the left subtree and the right
subtree, respectively.

2.2 Proof of Knowledge System [4], [8]
Let R be a binary polynomial-time relationR = {(x, w)} ⊂

{0,1}∗ × {0,1}∗. x is called astatementandw is called awitnessfor
the statementx. We assume that, given a statementx as an input,
any PPT algorithm can only output a witnessw satisfying (x, w) ∈ R

with a negligible probability. If this assumption holds, we say that
R is a hard relation ([8]).

A proof of knowledge system(PoK for short) is a protocol be-
tween interactive PPT algorhtms P and V on initial input (x, w) ∈ R

for P andx for V.
Completeness. An honest prover P with a legitimate witnessw can
makeV accept with probability 1.
Knowledge Soundness. There is a PPT algorithm called aknowl-

edge extractor, which, given a statementx and employing P as a
subroutine, can compute a witnessw satisfying (x, w) ∈ R with at
most a negligible error probability.

2.3 Σ-protocol [7], [8]
Let R be a binary polynomial-time relationR = {(x, w)} ⊂

{0,1}∗ × {0,1}∗.
A Σ-protocolon a relationR is a 3-move protocol between inter-

active PPT algorhtms P and V on initial input (x, w) ∈ R for P and
x for V. P sends the first message called a commitmentCmt, then
V sends a random bit string called a challengeCha, and P answers
with a third message called a responseRes. Then V applies a local
decision test on (x,Cmt,Cha,Res) to return accept (1) or reject (0).

*1 This limitation can be removed by addingnegation attributestoU for each
attribute in the originalU (but as a result, the size|U| doubles).
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Cha is chosen at random fromChaSp := {1,0}l(λ) with l(·) being a
super-log function.

This protocol is written by a PPT algorithmΣ as follows.Cmt←
Σ1(x, w): the process of selecting the first messageCmt according
to the protocolΣ on input (x, w) ∈ R. Similarly we denoteCha ←
Σ2(λ), Res← Σ3(x, w,Cmt,Cha) andb← Σvrfy(x,Cmt,Cha,Res).
Σ-protocol satisfies three constraints:

Completeness. An honest proverP with a legitimate witnessw can
makeV accept with probability 1.
Special Soundness. Any PPT algorithm P∗ without any witness, a
cheating prover, can only respond for one possible challengeCha.
In other words, there is a PPT algorithm called aknowledge extrac-

tor, Σke, which, given a statementx and using P∗ as a subroutine,
can compute a witnessw satisfying (x, w) ∈ R with at most a neg-
ligible error probability, from two accepting conversations of the
form (Cmt,Cha,Res) and (Cmt,Cha′,Res′) with Cha , Cha′.
Honest-Verifier Zero-Knowledge. Given a statementx and aran-

domchallengeCha, we can produce (in polynomial-time) an ac-
cepting conversation (Cmt,Cha,Res), with the same distribution as
the real accepting conversations, without knowing the witnessw. In
other words, there is a PPT algorithm called asimulator, Σsim, such
that (Cmt,Res)← Σsim(x,Cha).
Σ-protocols are known to be proofs of knowledge ([8]).
We will use in this paper a property that not only a prover but also

a verifier can compute a new statementy on input (x,Cmt,Cha) in
polynomial-time, which makesRes the corresponding witness. We
denote the algorithm asΣstmtforRes;

y← ΣstmtforRes(x,Cmt,Cha) s.t. (y, ∃Res) ∈ R,

∧ (Cmt,Cha,Res) : an accepting conversation.

Known Σ-protocols such as the Schnorr protocol and the Guillou-
Quisquater protocol [5], [13] possess this property.
2.3.1 The OR-proof [8]

Suppose that aΣ-protocolΣ on a relationR is given. Consider
the following relation.

ROR = {({x0, x1}, {w0, w1}); (x0, w0) ∈ R∨ (x1, w1) ∈ R}

Then we construct a new protocol on a relationROR as follows. For
an explanation, suppose (x0, w0) ∈ R holds. P computesCmt0 ←
Σ1(x0, w),Cha1 ← ChaSp, (Cmt1,Res1) ← Σsim(x1,Cha1) and
sends (Cmt0,Cmt1) to V. Then V sendsCha ← Σ2(λ) to P. Then,
P computesCha0 := Cha ⊕ Cha1,Res0 ← Σ3(x0, w0,Cmt0,Cha0)
answers to V with (Cha0,Cha1) and (Res0,Res1). Here⊕ denotes a
bitwise Exclusive-OR operation. Then both (Cmt0,Cha0,Res0) and
(Cmt1,Cha1,Res1) are accepting conversations and have the same
distribution as real accepting conversations. This protocol also can
be proved to be aΣ-protocol, and is called theOR-proofΣ-protocol.
2.3.2 Fiat-Shamir Transform [1]

Employing a cryptographic hash function with collision resis-
tance,Hλ(·) : {1,0}∗ → {1,0}l(λ), aΣ-protocolΣ can be transformed
into a digital signature scheme as follows. Given a messagem, ex-
ecute: a ← Σ1(x, w), c ← Hλ(m ∥ a), z ← Σ3(x, w,a, c). Then
σ := (a, z) is a signature onm. We denote the above signing algo-
rithm as FSsign

Σ
(λ; x, w,m)→ (a, z) =: σ. The verification algorithm

is: FSvrfy
Σ

(x,m, σ) : c← Hλ(m ∥ a), b← Σvrfy(x,a, c, z), returnb.
The signature scheme FSΣ = (R,FSsign

Σ
,FSvrfy

Σ
) is known to be

extentially unforgeable against chosen-message attacksif and only
if underlyingΣ-protocolΣ is secure againstpassive attacks[1].

2.4 Credential-Bundle [12]
Credential-bundle is an extended notion of digital signa-

ture. Suppose that we are given a digital signature scheme
(KG,Sign,Vrfy). To construct a credential-bundle scheme, first
choose a stringτ, a tag. τ can be chosen as a random string or
a publicly known string such as an e-mail address. Then, for a
set of messagesm1, . . . ,mn, execute Sign on eachtagged message

(τ ∥ mi), i = 1, . . . , n. Verify is applied in a obvious way.

2.5 Attribute-Based Identification Scheme [2]
In this paper, we will describeverifier-policy attribute-based

identification schemes [2].
2.5.1 Scheme

An attribute-based identification scheme,ABID, consists of four
PPT algorithms: (Setup, KeyGen, P, V).
Setup(λ,U) → (PK,MSK ). Setup takes as input the security pa-
rameterλ and an attribute universeU. It outputs a public key PK
and a master secret key MSK.
KeyGen(PK,MSK ,S) → SKS. A key-generation algorithm Key-
Gen takes as input the public key PK, the master secret key MSK
and an attribute setS ⊂ U. It outputs a secret key SKS correspond-
ing toS.
P(PK,SKS) and V(PK, f ). P and V are interactive algorithms
called aprover and averifier, respectively. P takes as input the
public key PK and the secret key SKS. Here the secret key SKS is
given to P by an authority that runs KeyGen(PK,MSK,S). V takes
as input the public key PK and an access formulaf . P is provided
V’s access formulaf by the first round. P and V interact with each
other for some, at most constant rounds. Then, V finally returns its
decision 1 or 0. 1 means that VacceptsP in the sense P has a secret
key SKS such thatf (S) = 1. 0 means that VrejectsP. We demand
correctness ofABID that for anyλ andU, and if f (S) = 1, then
Pr[(PK,MSK)← Setup(λ,U); SKS ← KeyGen(PK,MSK,S);
b← ⟨P(PK,SKS),V(PK, f )⟩ : b = 1] = 1.
2.5.2 Concurrent Attack on ABID and Security

An adversaryA’s objective is impersonation.A tries to make a
verifier V accept with an access formulaf ∗. The following exper-
imentExprmt ca

A,ABID(λ,U) of an adversaryA defines the game of
concurrent attack on ABID.

Exprmt ca
A,ABID(λ,U) :

(PK,MSK)← Setup(λ,U)

( f ∗, st)← AKG(PK,MSK,·),P j (PK,SK·)|
qp
j=1(PK,U)

b← ⟨A(st),V(PK, f ∗)⟩
If b = 1 then Return Win else Return Lose

In the experiment,A issues key-extraction queries to the key-
generation oracleKG. Giving an attribute setSi , A queries
KG(PK,MSK, ·) for the secret key SKSi . We do not require any
two input, Si1 andSi2, to be distinct. On the other hand, the ad-
versaryA invokes provers Pj(PK,SK·), j = 1, . . . ,q′p, . . . ,qp, by
giving an attribute setS j ofA’s choice. Acting as a verifier with an
access formulaf j ,A interacts with each Pj .

The access formulaf ∗ declared byA is called atarget access

formula. Here we consider an adaptive target access formulaf ∗ in
the sense thatA’s declaration off ∗ is not limited before seeing the
public key PK. Two restrictions are imposed onA concerningf ∗.
In key-extraction queries, each attribute setSi must satisfySi < f ∗.
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In interactions with each prover,f (S j) = 0. The number of key-
extraction queries and the number of invoked provers are at mostqk

andqp in total, respectively, which are bounded by a polynomial in
λ.

TheadvantageofA overABID in the game of concurrent attack
is defined as

Advca
A,ABID(λ)

def
= Pr[Exprmt ca

A,ABID(λ,U) returnsWin].

ABID is calledsecure against concurrent attacksif, for any PPTA
and for any attribute universeU, Advca

A,ABID(λ) is negligible inλ.
2.5.3 Anonymity

Consider the following experimentExprmt anonym
A,ABID(λ,U). (In the

experiment, an adversaryA interacts withP(PK,SKSb) as a verifier
with f ∗.)

Exprmt anonym
A,ABID(λ,U) :

(PK,MSK)← Setup(λ,U), (S0,S1, f
∗)← A(PK)

s.t. (f ∗(S0) = f ∗(S1) = 1)∨ (( f ∗(S0) = f ∗(S1) = 0)

SKS0 ← KeyGen(PK,MSK,S0)

SKS1 ← KeyGen(PK,MSK,S1)

b← {0,1}, b̂← AP(PK,SKSb )(PK,SKS0 ,SKS1)

If b = b̂ Return Win else Return Lose

We say thatABID haveanonymityif, for any PPTA and for anyU,
the following advantage ofA is negligible inλ.

Advanonym
A,ABID(λ)

def
=

|Pr[Exprmt anonym
A,ABID(λ,U) returnsWin] − 1/2|.

2.5.4 Attribute-Based Identification Scheme of Proof of
Knowledge

Let f be an access formula. An attribute-based identification
scheme of proof of knowledge is an attribute-based identification
scheme which satisfies the following knowledge soundness.
Knowledge Soundness. There is a PPT algorithm called aknowl-

edge extractor, which, given a public key PK and employing P as a
subroutine, can compute a secret key SKS for someS ⊂ U satisfy-
ing f (S) = 1, with at most a negligible error probability.

3. Definition: Σ-protocol of Boolean
Formula-Proof

In this section, we define aΣ-protocol of a boolean formula-
proof, which is a generalization of theΣ-protocol of OR-proof [8].

Let R be a binary polynomial-time relationR = {(x, w)} ⊂
{1,0}∗ × {1,0}∗. Then we create a new relationRf :

Rf
def
= {(X := {xatt},W := {watt}) ∈ {1,0}∗ × {1,0}∗;
f (S := {att; (xatt, watt) ∈ R}) = 1}. (1)

Then aΣ-protocol of f -proof on the relationRf is defined as a 3-
move protocol between interactive PPT algorhtms P and V on ini-
tial input (X := {xatt},W := {watt}) ∈ Rf for P, andX for V. P sends
the first message called a commitmentCmt, then V sends a ran-
dom bit string called a challengeCha, and P answers with a third
message called a responseRes. Then V applies a local decision
test on (X,Cmt,Cha,Res) to return accept (1) or reject (0). Here
Cha is chosen at random fromChaSp := {1,0}l(λ) with l(·) being a
super-log function.

This protocol is written by a PPT algorithmΣ f as follows.

Cmt ← Σ1
f (X,W): the process of selecting the first message

Cmt according to the protocolΣ f on input (X,W) ∈ Rf . Sim-
ilarly we denoteCha ← Σ2

f (λ), Res ← Σ3
f (X,W,Cmt,Cha) and

b← Σvrfy
f (X,Cmt,Cha,Res).

To be aΣ-protocol,Σ f must satisfy three constraints:
CompletenessAn honest proverP with a legitimate witness setW
can makeV accept with probability 1.
Special Soundness. Any PPT algorithm P∗ without any witness set,
a cheating prover, can only respond for one possible challengeCha.
In other words, there is a PPT algorithm called aknowledge extrac-

tor, Σke
f , which, given a statementX and usingP∗ as a subroutine,

can compute a witness setW satisfying (X,W) ∈ Rf with at most
a negligible error probability, from two accepting conversations of
the form (Cmt,Cha,Res) and (Cmt,Cha′,Res′) with Cha , Cha′.
Honest-Verifier Zero-Knowledge. Given a statement setX and a
randomchallengeCha ∈ ChaSp, we can produce (in polynomial-
time) an accepting conversation (Cmt,Cha,Res), with the same dis-
tribution of real accepting conversations, without knowing the wit-
ness setW. In other words, there is a PPT algorithm called asim-

ulator, Σsim
f , such that (Cmt,Res) ← Σsim

f (X,Cha). Hohest-verifier
zero-knowledge implies zero-knowledge with respect to the honest
verifier.

A Σ-protocol of f -proof can be proved to be a proof of knowl-
edge system.

4. Construction of aΣ-protocol of Boolean
Formula-Proof

In this section, from a givenΣ-protocolΣ and an access formula
f , we construct aΣ-protocolΣ f of f -proof.

The outline of our protocolΣ f is described in Fig. 1. Basically
Σ f is a 3-move protocol between interactive PPT algorhtms P and
V on initial input (X := {xatt},W := {watt}) ∈ Rf for P andX for V.
Satisfiability Evaluation. A prover begins with satisfiability eval-
uation concerningf (S); we label each node ofT with a valuev
(True(1) or False(0)) according to whether or notS ∈ att(f ) holds
at each leaf node and AND or OR holds at each inner node. This
computation is described as follows.

Σeval
f (T ,S) :

TŁ := Lsub(T ),TR := Rsub(T )

If rt(T ) is an ∧ -node,

thenReturn vrt(T ) := (Σeval
f (TŁ ,S) ∧ Σeval

f (TR,S))

else if rt(T ) is an ∨ -node,

thenReturn vrt(T ) := ((Σeval
f (TŁ ,S) ∨ Σeval

f (TR,S))

else if rt(T ) is a leaf node,

thenReturn vrt(T ) := (att(rt(T ))
?∈ S)

Commitment. Prover’s computation of a commitment value for
each leaf node is described in Fig. 2. Basically, the algorithmΣ1

f is
a executed recursively.
Challenge. Verifier picks up a challenge value as follows.

Σ2
f (λ) : Cha← Σ2(λ),Return(Cha)

Response. Prover’s computation of a response value for each leaf
node is described in Fig. 3. Basically, the algorithmΣ3

f is executed
recursively.
Verification . Verifier’s computation is executed for each leaf node
as follows.
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P(X := {xatt},W := {watt}) V(X):
Initialize inner state Initialize inner state
Σeval

f (T f ,S)→ (vnd)nd∈Nd(T f )

If vrt(T f ) , 1, then abort
elseChart(T f ) := ∗
Σ1

f (X,W,T f , (vnd)nd∈Nd(T f ),

Chart(T f ))
→ ((Cmtlf )lf∈Lf(T f ),

(Chand)nd∈tNd(T f ), (Cmtlf )lf∈Lf(T f )

(Reslf )lf∈Lf(T f )) −→ Cha← Σ2
f (λ)

Cha
Chart(T f ) := Cha ←−
Σ3

f (X,W,T f , (vnd)nd∈Nd(T f ),

(Cmtlf )lf∈Lf(T f ),
Chart(T f ), (Chand)nd∈tNd(T f ),
(Reslf )lf∈Lf(T f ))

→ ((Chand)nd∈tNd(T f ), Σ
vrfy
f (X,T f ,

(Reslf )lf∈Lf(T f )) (Chand)nd∈tNd(T f ), (Cmtlf )lf∈Lf(T f ),
(Reslf )lf∈Lf(T f ) Cha, (Chand)nd∈tNd(T f ),

−→ (Reslf )lf∈Lf(T f ))→ b
Return b

Fig. 1 OurΣ-protocolΣ f of boolean formula-proof on a relationRf = {(X,W)}.

Σ1
f (X,W,T , (vnd)nd∈Nd(T ),Cha) :
TŁ := Lsub(T ),TR := Rsub(T )
If rt(T ) is an∧-node, thenChaŁ := Cha,ChaR := Cha

Return(ChaŁ ,ChaR,Σ1
f (X,W,TŁ , (vnd)nd∈Nd(TŁ ),ChaŁ ),Σ1

f (X,W,TR, (vnd)nd∈Nd(TR),ChaR))
else if rt(T ) is an∨-node, then

If vrt(TŁ ) = 1∧ vrt(TR) = 1, thenChaŁ := ∗, ChaR := ∗
else ifvrt(TŁ ) = 1∧ vrt(TR) = 0, thenChaŁ := ∗, ChaR ← ChaSp
else ifvrt(TŁ ) = 0∧ vrt(TR) = 1, thenChaŁ ← ChaSp,ChaR := ∗
else ifvrt(TŁ ) = 0∧ vrt(TR) = 0, thenChaŁ ← ChaSp,ChaR := Cha ⊕ ChaŁ
Return(ChaŁ ,Σ1

f (X,W,TŁ , (vnd)nd∈Nd(TŁ ),ChaŁ ),ChaR,Σ1
f (X,W,TR, (vnd)nd∈Nd(TR),ChaR))

else if rt(T ) is a leaf-node, then
If Cha = ∗, thenCmt← Σ1(xatt(rt(T ))),Res := ∗
else ifCha , ∗, then (Cmt,Res)← Σsim(xatt(rt(T )),Cha)
Return(Cmt,Res)

Fig. 2 The subroutineΣ1
f of ourΣ f .

Σ
vrfy
f (X,T , (Cmtlf )lf∈Lf(T ),

Cha, (Chand)nd∈tNd(T ), (Reslf )lf∈Lf(T )) :

If (VrfyCha (T ,Cha, (Chand)nd∈tNd(T )) = 1

∧ VrfyRes(X,T , (Cmt,Cha,Res)lf∈Lf(T )) = 1),

thenReturn 1 elseReturn 0

VrfyCha (T ,Cha, (Chand)nd∈tNd(T )) :

TŁ := Lsub(T ),TR := Rsub(T )

ChaŁ := Chart(TŁ ),ChaR := Chart(TR)

If rt(T ) is an ∧ -node,

thenReturn (Cha
?
= ChaŁ ∧ Cha

?
= ChaR

∧ VrfyCha (TŁ ,ChaŁ , (Chand)nd∈tNd(TŁ ))

∧ VrfyCha (TR,ChaR, (Chand)nd∈tNd(TR))

else if rt(T ) is an ∨ -node,

thenReturn (Cha
?
= Chart(TŁ ) ⊕ Chart(TR)

∧ VrfyCha (TŁ ,ChaŁ , (Chand)nd∈tNd(TŁ ))

∧ VrfyCha (TR,ChaR, (Chand)nd∈tNd(TR))

else if rt(T ) is a leaf node,

thenReturn (Cha
?∈ ChaSp)

VrfyRes(X,T , (Cmt,Cha,Res)lf∈Lf(T )) :

For lf ∈ Lf(T )

If Σvrfy(xatt(lf),Cmtlf ,Chalf ,Reslf ) = 0,

thenReturn (0)

Return (1)

Now we have to check thatΣ f is certainly aΣ-protocol of f -
proof.

Proposition 1 (Completeness) Completeness holds for our
Σ f . More precisely, Suppose thatvrt(T f ) = 1. Then, for every node
in Nd(T f ), eithervnd = 1 orChand , ∗ holds after executingΣ1

f .
Proof(sketch). Induction on the height ofT f . The case of height
0 follows fromvrt(T f ) = 1 and the completeness ofΣ. Suppose that
the case of heightk holds and consider the case of heightk+1. The
construction ofΣ1

f assures the case of heightk+ 1. □
Proposition 2 (Special Soundness)Special soundness

holds for ourΣ f .
Proof(sketch). We can construct a knowledge extractorΣke

f from a
knowledge extractorΣke of the underlyingΣ-protocolΣ as follows.

Σke
f ((Cmtlf ,Chalf ,Reslf )lf∈Lf(T f ), (Cmtlf ,Cha

′
lf ,Res

′
lf )lf∈Lf(T f )) :

S∗ := ϕ

For lf ∈ Lf(T f )

If Chalf , Cha′lf , thenS∗ := S∗ ∪ {att(lf)}
w∗att(lf) ← Σke((Cmtlf ,Chalf ,Reslf ), (Cmtlf ,Cha

′
lf ,Res

′
lf ))

Return (W∗ := {w∗att}att∈S∗ ,S
∗)

Then Lemma 1 assures the proposition.
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Lemma 1 (Witness Set Extraction) The setW∗ output byΣke
f

satisfies (X,W∗) ∈ Rf .
Proof(sketch). Induction on the number of all∨-nodes in iNd(T f ).
First remark thatCha , Cha′.

Suppose that all nodes in iNd(T f ) are∧-nodes. Then the above
claim follows immediately becauseChalf , Cha′lf holds for all leaf
nodes, and henceS∗ = Lf(T f ).

Suppose that the case ofk ∨-nodes holds and consider the case
of k + 1 ∨-nodes. Look at one of the lowest height∨-node and
name the height and the node ash∗ and nd∗, respectively. Then
Chand∗ , Cha′nd∗ because all nodes with height less thanh∗ are
∧-nodes. So at least one of children of nd∗, say nd∗L, satisfies
Chand∗L , Cha′nd∗L

. Divide the treeT f into two subtrees by cutting
the branch right above nd∗, and the induction hypothesis assures the
claim. □

Proposition 3 (Honest Verifier Zero-Knowledge)
Honest verifier zero-knowledge property holds for ourΣ f .
Proof(sketch). This is the immediate consequence of honest ver-
ifier zero-knowledge property ofΣ. That is, we can construct a
polynomial-time simulatorΣsim

f which, on input (PK,Cha), outputs
commitment and response message ofΣ f . □

Theorem 1 Σ f is certainly aΣ-protocol of f -proof on the rela-
tion Rf .

5. Our Attribute-Based Identification
Scheme of Proof of Knowledge

Employing the credential-bundle technique, we modifyΣ f into
ABIDofPoK that has collusion resistance. The obtained scheme is
an ABID of PoK scheme.

5.1 Scheme
The outline of our schemeABIDofPoK is described as follows.

We describe below two additional algorithms which are not inΣ f .
Supplement. This is a generator of each supplementary element
aatt for att ∈ att(f )\S, which is described as follows.

Supplement(PK = xM , (aatt)att∈S,att(f )) :

For att∈ att(f ), If att < S, then

catt← ChaSp, (aatt, zatt)← Σsim(xM , catt)

Return (aatt)att∈att(f )

StmtGen. This is a generator of each statementxatt for att ∈ att(f ),
which is described as follows.

StmtGen(PK = xM , τ, (aatt)att∈att(f ))

For att∈ att(f )

matt := (τ ∥ att), catt← Hλ(matt ∥ aatt)

xatt← ΣstmtforRes(xM ,aatt, catt)

Return {xatt}att∈att(f )

Then, our ABID of PoK scheme, ABIDofPoK =

(Setup,KeyGen,P,V), is described as follows.

Setup(λ,U) :

(xM , wM)← InstanceR(λ)

PK := xM ,MSK := wM

Return(PK,MSK)

KeyGen(PK,MSK,S) :

τ← {0,1}λ

For att ∈ S

matt := (τ ∥ att)

FSsign
Σ

(λ; PK,MSK,matt)

→ (aatt, watt) =: σatt

SKS := (τ, (σatt)att∈S)

Return SKS.

Note that the credential-bundle technique [12] is employed.
Then, to obtain a whole scheme of ABID of PoK, add the fol-

lowing two procedures (1) and (2) inP(PK,SKS; f ) andV(PK, f ),
respectively.
(1) Just after settingChart(T f ) := ∗, do the following so as to be able
to runΣ1

f (X,W,T f , (vnd)nd∈Nd(T f ),Chart(T f )):

Supplement(PK, (aatt)att∈S,att(f ))→ (aatt)att∈att(f )

StmtGen(PK, τ, (aatt)att∈att(f ))→ {xatt}att∈att(f ) =: X,W := {watt}att∈S.

In the first move, P sends to the verifier V additional elementsτ and
(aatt)att∈att(f ).
(2) Just after runningCha← Σ2

f (λ), do:

StmtGen(PK, τ, (aatt)att∈att(f ))→ {xatt}att∈att(f ) =: X.

Theorem 2 (Our ABID of PoK is a Σ-protocol) Suppose
that a givenΣ-protocolΣ possesses a polynomial-time algorithm
ΣstmtforRes. Then ourABIDofPoK is a Σ-protocol on the relation
Rf := {(X,W)}.
Proof(sketch). Completeness follows from the Completeness of
Σ f . For special soundness, just convert the output ofΣke into SKS.
For honest verifier zero-knowledge, convertΣsim

f (PK,Cha) so as to
generate additional elements (a randomτ and (aatt)att∈att(f )).

5.2 Security of Our ABID of PoK and its Proof
Theorem 3 (Security against Concurrent Attacks) If the

employed signature scheme FSΣ is existentially unforgeable
against chosen-plaintext attacks, then ourABIDofPoK is secure
against concurrent attacks.

Proof(sketch). Employing any given adversaryA as subroutine,
we construct a signature forgerF
F can answer toA’s key extraction queries for a secret key SKS

becauseF can query his signing oracle about (τ ∥ att; att ∈ S),
whereF chooseτ at random.F can simulate any concurrent prover
with SKS which A invokes becauseF can generate SKS in the
above way.

After the learning phase above,F simulates a verifier with which
A begins to interact as a prover. ThereF rewindsA once andF
can obtain a witness set (W∗,S∗) by runningΣke

f . Finally F con-
verts (W∗,S∗) into SKS∗ . □

5.3 Anonymity
For the case of honest verifier, anonymity described in Section

2.5.3 follows from the honest verifier zero-knowledge property. As
for the case of dishonest verifier, it is not obvious that the anonymity
holds.

6. Application: Attribute-Based Signature
Scheme via the Fiat-Shamir Transform

In this section, we briefly describe an attribute-based signature
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scheme obtained by applying the Fiat-Shamir Transform [1].
The Fiat-Shamir Transform ([1], [9]), briefly described in Sec-

tion 2.3.2, can be directly applied to ourABIDofPoK because our
ABIDofPoK is aΣ-protocol.

Discussions in [1] can be applied, so the security of the obtained
attribute-based signature scheme is equivalent to the security of our
ABIDofPoK against passive attacks.

Corollary 1 (Our Attribute-Based Signature Scheme)
Our attribute-based signature scheme obtained by applying the
Fiat-Shamir Transform to ourABIDofPoK is secure based on the
passive security ofABIDofPoK.

According the Reset Lemma [5], the security of ourABIDof
PoK against passive attacks reduces to the security of the employed
signature scheme, which is obtained, in our construction, by the
Fiat-Shamir Transform of aΣ-protocolΣ in our KeyGen algorithm.
Again, the security of the employed signature scheme is equiva-
lent to the security of aΣ-protocol against passive attacks. And
finally, according the Reset Lemma, the security of aΣ-protocol
against passive attacks reduces to some number theoretic assump-
tions (such as the discrete logarithm assumption and the RSA as-
sumtion). We remark that security reduction is loose.

7. Concrete Constructions

In this section, we explain our ABID of PoK scheme in concrete
forms, that is, in discrete logarithm-setting and RSA setting.

7.1 Discrete Logarithm-Setting
Suppose thatGp is a cyclic group of prime orderp, |p| = λ and

β = gα ∈ Gp. Setup outputs the following master secret key and
public key.

MSK = α,PK = (g, β).

KeyGen outputs SKS with signaturesσ = (aatt = g
ratt, watt =

ratt + cattα), whereratt ∈ Zp is chosen at random andmatt := τ ∥
att, catt ← Hλ(matt ∥ aatt). ΣstmtforRes is realized by computing:
xatt := aattβ

catt.
The rest of protocol is executed according toΣ f on input (X,W)

and with the following setting.

Cmtlf = g
rCmtlf ,Cha← ChaSp,

Reslf = rCmtlf + Chalf watt(lf),

Verification Equation :gReslf
?
= Cmtlf (xatt(lf))

Chalf .

7.2 RSA Setting
Suppose thatN is an RSA modulus with|N| = λ, e is an RSA

exponent of odd prime andβ = αe mod N. Setup outputs the fol-
lowing master secret key and public key.

MSK = α,PK = (N,e, β).

KeyGen outputs SKS with signaturesσ = (aatt = re
att, watt =

rattα
catt), whereratt ∈ Z mod N is chosen at random andmatt :=

τ ∥ att, catt ← Hλ(matt ∥ aatt). ΣstmtforRes is realized by computing:
xatt := aattβ

catt.
The rest of protocol is executed according toΣ f on input (X,W)

and with the following setting.

Cmtlf = rCmtlf
e,Cha← ChaSp,Reslf = rCmtlf (watt(lf))

Chalf ,

Verification Equation :Reslf
e ?
= Cmtlf (xatt(lf))

Chalf .

8. Conclusions and Future Work

We first construct aΣ-protocol of boolean formula-proof from a
givenΣ-protocol. There, a knowledge extractor is provided to ex-
tract a witness set. Then, using the credential bundle technique,
we construct an attribute-based identification scheme of proof of
knowledge,ABIDofPoK. Applying the Fiat-Shamir Transform to
ourABIDofPoK results in an attribute based signature scheme.
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Σ3
f (X,W,T , (vnd)nd∈Nd(T ), (Cmtlf )lf∈Lf(T ),Cha, (Chand)nd∈tNd(T ), (Reslf )lf∈Lf(T )) :
TŁ := Lsub(T ),TR := Rsub(T )
If rt(T ) is an∧-node, thenChaŁ := Cha,ChaR := Cha

Return(ChaŁ ,Σ3
f (X,W,TŁ , (vnd)nd∈Nd(TŁ ), (Cmtlf )lf∈Lf(TŁ ),ChaŁ , (Chand)nd∈tNd(TŁ ), (Reslf )lf∈Lf(TŁ ))

ChaR,Σ3
f (X,W,TR, (vnd)nd∈Nd(TR), (Cmtlf )lf∈Lf(TR),ChaR, (Chand)nd∈tNd(TR), (Reslf )lf∈Lf(TR)))

else if rt(T ) is an∨-node, then
If vrt(TŁ ) = 1∧ vrt(TR) = 1, thenChaŁ ← ChaSp, ChaR := Cha ⊕ ChaŁ
else ifvrt(TŁ ) = 1∧ vrt(TR) = 0, thenChaŁ := Cha ⊕ Chart(TR),ChaR := Chart(TR)

else ifvrt(TŁ ) = 0∧ vrt(TR) = 1, thenChaŁ := Chart(TŁ ), ChaR := Cha ⊕ Chart(TŁ )

else ifvrt(TŁ ) = 0∧ vrt(TR) = 0, thenChaŁ := Chart(TŁ ), ChaR := Chart(TR)

Return(ChaŁ ,Σ3
f (X,W,TŁ , (vnd)nd∈Nd(TŁ ), (Cmtlf )lf∈Lf(TŁ ),ChaŁ , (Chand)nd∈tNd(TŁ ), (Reslf )lf∈Lf(TŁ ))

ChaR,Σ3
f (X,W,TR, (vnd)nd∈Nd(TR), (Cmtlf )lf∈Lf(TR),ChaR, (Chand)nd∈tNd(TR), (Reslf )lf∈Lf(TR)))

else if rt(T ) is a leaf-node, then
If Resrt(T ) = ∗, thenRes← Σ3(xatt(rt(T )), watt(rt(T )),Cmtrt(T ),Cha)
else ifResrt(T ) , ∗, thenRes← Resrt(T )

Return(Res)

Fig. 3 The subroutineΣ3
f of ourΣ f .
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