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Boolean Formula-Proof and Its Application to
Attribute-Based ldentifications and Signatures

Hiroak: ANaDAL2®  Spiko Arima?®  Kouicar Sakurart:3©)

Abstract: We propose a notion dfoolean formula-proof system (f-proadf) the form of aX-protocol. Ourf-proof

system is a generalization of the well-kno®sprotocol of OR-proof system; that is, it treats any boolean formula (which

does not have a NOT-gate) instead of a single OR-gate. In addition, as is the case farpisiatol, ourf-proof system

is a proof of knowledge system; that is, it possesses a knowledge extractor that extracts a witness set that satisfies the
boolean formulaf. Next, we provide a construction of ofirproof system from a giveB-protocol. Then, by combining

our f-proof system with a credential bundle scheme, we obtain an attribute-based identification scheme of proof of knowl-
edge type. It possesses a property of attribute-privacy and a feature that it can be constructed without pairings. Finally, by
applying the Fiat-Shamir Transform, we obtain an attribute-based signature scheme, which is secure in the random oracle
model.
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written in boolean variables and boolean connectives (AND gates

and OR gates). There is also a set of instances. Then a prover can
TheX-protocol [7], [8] is a proof system that allows a prover, ina convince a verifier that the prover knows a set of witness (withess

3-move, to convince a verifier that the prover knows an answer (thatset) that satisfies the formula Here each boolean variable ap-

is, a witness) of a hard problem instance. The knowledge is assuregearing inf take 1 or 0 according to whether the prover knows the

by the presence of a knowledge extractor, which extracts the wit- corresponding witness or not.

ness by employing the prover as a subroutine. In that sensEg; the Our X-protocol of f-proof has interesting application to

protocol is a proof of knowledge system. In addition, Yhprotocol attribute-based identification of proof of knowledge (ABID of PoK)

is known to be a zero-knowledge proof system against honest ver-and attribute-based signatures (ABS).

ifiers. That is, after a whole interaction, an honest verifier knows Let us first remember the notion of ABID. Attribute-based iden-

nothing but only the fact that the prover knows the witness. That tification (ABID) was introduced in [2]. In an ABID scheme, a

>-protocol, which has those distinguished properties, is concretelyprover has credentials called attributes. On the other hand, a ver-

realized as the Schnorr protocol [13] and the Guillou-Quisquater ifier maintains an access policy written as a boolean formula over

protocol (which are the origin of the-protocol). those attributes. Then, a verifier can identify that a prover possesses
An extended notion, th&-protocol of OR-proof, has been de- a set of attributes that satisfies the verifier's access policy.

veloped [8] and applied so as to achieve, for example, man-in-the- Hence an ABID of PoK scheme is defined as an ABID scheme

middle security (Katz02). In the OR-proof, there are two instances with a knowledge extractothat extracts a witness set that satisfies

and a prover can convince a verifier that the prover knows a witnessthe verifier's access policy.

1. Introduction

of one instance, or another, or both. Is is notable that almost all attribute-based cryptographic primi-
In this paper, we propose and construci-protocol ofboolean tives so far (originated in [10], [14]) are constructed basecally with
formula-proof (f-proof), which is a generalization of tf& protocol linear secret sharing schemes (LSSS)([3]) and pairing maps ([6]).

of OR-proof. In ourZ-protocol of f-proof, f is a boolean formula  Our approach is dierent from that construction.

1 Institute of Systems, Information Technologies and Nanotechnologies 1.1 Our Idea and Contributions

(ISIT), Fukuoka SRP Center Building 7F, Momochihama 2-1-22, Sawara-

ku, Fukuoka, 814-0001, Japan To constr.uct &-protocol if f-proof, we will look into the OR-

2 Graduate School of Information Security, Institute of Information Security, Proof technique [8] and expand it so as to treat any boolean formula
2-14-1 Tsuruyacho, Kanagawa-ku, Yokohama, 221-0835, Japan (without negations), as follows

3 y .

Graduate School and Faculty of Information Science and Electrical Engi- . .
neering, Kyushu University, Room 712, West Bldg. No.2, Moto-oka 744, First express a boolean formula (an access formula) as a binary

Nishi-ku, Fukuoka, 819-0395, Japan tree (an access tree); that is, with its inner nodes being AND gates
9 Aluiee ) _ _
b Zﬂfg)%zg'g?j% and OR gates and its leaf nodes being terms that map to attributes.
0 sakurai@céce:kyushu-u.ac.jp An verification equation ok is assigned to each leaf node. Sup-
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pose that a challenge stri@ya of X is given, and then assigbua

tinguish two cases: the case tlitis small (that is|U| = U is

to the root node. If the root node is an AND gate, assign the samebounded by some polynomial i) and the case thak( is large

string Cua to two children. Else if the root node is an OR gate, (thatis,U is not necessarily bounded). We assume the small case

divide Cua into two random string€ua; and Caag which satisfy
Cua = Cua, @ CHag, and assigrCua, and Cuag to the left and
right children, respectively. Here means a bitwise exclusive-OR

unless we state the large case explicitly.

Suppose that we are given an access policy as a boolean formula

f over variable$Xai}ares (for example,f = Xar, A (Xaty, A Xatg) V

operation. Then continue to apply this rule at each height, step byXay,)). Thatis, each terif, is a predicate which, on inp& € 2%,
step, until we reach to each leaf node. Then, basically, the OR-takes a boolean value according to whethee&gtor not. Then the

proof technique assures we can either honestly exetptetocol

boolean output of atS is evaluated according to boolean connec-

X or executeX in a simulated way. Only when a set of attributes tives, that is, AND gatesA-gates) or OR gates/fgates). Hencd
satisfies the access tree the above procedure succeeds in satisfis a function: f : 2% — {1,0}. We call the boolean formulé an
ing verification equations for each leaf node. We call the above access formulaver/.

proceduréboolean formula-proofThe boolean formula-proof is a
natural, but non-trivial extension of the OR-praiprotocol.

As our theoretical contribution, we provide Zprotocol of
boolean formula-prooff:. Given a boolean formuld without

In this paper, we do not consider NOT gate$, ¢hat is, we only
consider monotone boolean formufas
2.1.1 Access Tree

We consider in this paper a finte binary trée that is, a tree

negation and &-protocol X, we generically constru®; so that that has finite number of nodes and each non-leaf node has two
Xt is aX-protocol to prove knowledge of a witness set that satisfies branches. For a tre@, let Nd{7"), rt(7), Lf(7"), iNd(7) and
f. tNd(7") denote the set of all nodes, the root node, the set of all
As our practical contribution, we provide ABID of PoK schemes leaf nodes the set of all inner nodes (that is, all nodes excluding
and ABS schemesvithout pairings. More precisely, As &- leaf nodes) and the set of all tree-nodes (that is, all nodes exclud-
protocol X can be constructed without pairings (for example, the ing the root node) ir/", respectively. An access formufacan
case of Schnorr scheme [5], [13]), our generic construction re- be represented by a finite binary trée. Each leaf node corre-
sults in a concrete boolean formula-praf without pairings, and sponds to a ternXy in f in one-to-one way. Each inner node
hence, an ABID of PoK scheme and an ABS scheme, without pair-represents an operator;gate orv-gate, inf. An attribute map
ings, whose security are in the random oracle model. att() : Lf(7) — U is defined, for If € Lf(7), as att(lf) =
(the attribute att of the termday).
1.2 Related Work If 7~ is of height greater than @, has two subtrees whose root
The OR-proof is precisely explained in, for example, [8]. The nodes are two children of ff{). We denote the two subtrees by
OR-proofs have applications such as achieving security againstLsub(7) and Rsub["), which mean the left subtree and the right

man-in-the-middle adversary. Our boolean formula-proof can be subtree, respectively.

seen as a natural extension of the OR-proof.
ABID is introduced by Anada et al.

in [2]. Then they pro-
vided a challenge-and-response construction of ABID scheme us-

2.2 Proof of Knowledge System [4], [8]
Let R be a binary polynomial-time relatioR = {(x,w)} c

ing attribute-based key encapsulation mechanism. In contrast, we0, 1}* x {0, 1}*. xis called astatemenandw is called awitnessfor

provide three move protocol with knowledge-extraction property.

1.3 Organization of this Paper

the statemenk. We assume that, given a statemgras an input,
any PPT algorithm can only output a witnessatisfying &, w) € R
with a negligible probability. If this assumption holds, we say that

In Section 2, we prepair for the needed tools and notions. In Ris a hard relation ([8]).

Section 3, we give a definiton &protocol of boolean formula-
proof. In Section 4, we describe the construction of Byarotocol
of boolean formula-proofZ;. In Section 5, we modify ouE; into

A proof of knowledge syste(®oK for short) is a protocol be-
tween interactive PPT algorhtms P and V on initial inpyt() € R
for P andx for V.

a ABID of PoK scheme. In Section 7, we show how concretely our CompletenessAn honest prover P with a legitimate witnesan
ABIDofPoK is realized in discrete logarithm-setting and RSA set- makeV accept with probability 1.

ting. In Section 6, we apply the Fiat-Shamir Transform to our our Knowledge SoundnesJhere is a PPT algorithm calledkaowl-
ABIDofPoK scheme and obtain a ABS scheme. In Section 8, we edge extractgrwhich, given a statementand employing P as a

conclude our work in this paper.

2. Preliminaries

The security parameter is denoted hy When an algorithmA
with input a outputsz, we denote it ag « A(a), or, because of
space limitation,A(a) — z When A with input a and B with
input b interact with each other anBl outputsz, we denote it as
z «— (A(a), B(b)). WhenA has oracle-access @, we denote it as
A%, WhenA has concurrent oracle-accesatoraclesOs, ..., O,
we denote it a®\?"1. Here “concurrent” means thataccesses to
oracles in arbitrarily interleaved order of messages.

2.1 Access Formula [10]
Let U = {atty,..
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.,atty} be an attribute universe. We must dis-

subroutine, can compute a witnassatisfying & w) € R with at
most a negligible error probability.

2.3 ZX-protocol [7], [8]

Let R be a binary polynomial-time relatioR =
{0,1)* x {0, 1}*.

A X-protocolon a relatiorR is a 3-move protocol between inter-
active PPT algorhtms P and V on initial inpw ¢) € Rfor P and
x for V. P sends the first message called a commitn@nt, then
V sends a random bit string called a challet@ye, and P answers
with a third message called a respof@s. Then V applies a local
decision test onx; Cmr, CHa, REs) to return accept (1) or reject (0).

{(xw)} c

*1 This limitation can be removed by addinggation attributeso 2/ for each
attribute in the originat/ (but as a result, the siz@{| doubles).
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Cua is chosen at random fro@uaSe := {1, 0)'D with I(-) being a
super-log function.

This protocol is written by a PPT algorithBas follows.Cmt «—
Tl(x,w): the process of selecting the first mess@ge according
to the protocol on input &, w) € R. Similarly we denoteCua «
22(1), Res « Z3(x, w, Cmt, Cra) andb « V'Y (x, Cur, Cha, Res).

>-protocol satisfies three constraints:

CompletenessAn honest proveP with a legitimate witness can
makeV accept with probability 1.

Special Soundnes#\ny PPT algorithm Pwithout any witness, a
cheating prover, can only respond for one possible chall€nge

In other words, there is a PPT algorithm callekh@wledge extrac-
tor, =€, which, given a statementand using P as a subroutine,
can compute a witness satisfying & w) € R with at most a neg-
ligible error probability, from two accepting conversations of the
form (Cwmr, CHa, Res) and Cwur, Cua’, Res”) with Cua # CHA’.
Honest-Verifier Zero-KnowledgeGiven a statement and aran-
domchallengeCua, we can produce (in polynomial-time) an ac-
cepting conversatiorQur, CHa, Res), with the same distribution as
the real accepting conversations, without knowing the witneds
other words, there is a PPT algorithm callesimulator, ¥sim sych
that (Cmr, Res) « Z5M(x, CHa).

Y-protocols are known to be proofs of knowledge ([8]).

We will use in this paper a property that not only a prover but also
a verifier can compute a new statemgmn input &, Cmr, Cra) in
polynomial-time, which makeBes the corresponding witness. We
denote the algorithm agstmtfores.

y « ZSIMHORES (y Oy, CHA) S.t. (7, "Res) € R

A (Cwmr, CHa, REes) : an accepting conversation

Known Z-protocols such as the Schnorr protocol and the Guillou-
Quisquater protocol [5], [13] possess this property.
2.3.1 The OR-proof [8]

Suppose that &-protocolX on a relationrR is given. Consider
the following relation.

Ror = {({X0, X1}, {wo, w1}); (X0, wo) € RV (X1, w1) € R}

Then we construct a new protocol on a relatiRgk as follows. For

an explanation, suppose&y(wo) € R holds. P compute€mry «
21(xo, w),CHA; < CHASP, (Cwmr1, REs;) « XS™(xq, CHa) and
sends Cumrg, Cmty) to V. Then V sendCua « X?(1) to P. Then,

P computeCrag = Cua @ Char, Resg «— Z3(Xo, wo, CMTo, CHag)
answers to V withCrag, Cha;) and Resg, Res;). Heres denotes a
bitwise Exclusive-OR operation. Then botbvrg, CHag, Resg) and
(Cmry, CHA1, REs;) are accepting conversations and have the same

2.4 Credential-Bundle [12]

Credential-bundle is an extended notion of digital signa-
ture. Suppose that we are given a digital signature scheme
(KG, Sign Vrfy). To construct a credential-bundle scheme, first
choose a string, atag. = can be chosen as a random string or
a publicly known string such as an e-mail address. Then, for a
set of messageasy, ..., m,, execute Sign on eadhgged message
(r |l m),i =1,...,n. Verify is applied in a obvious way.

2.5 Attribute-Based Identification Scheme [2]

In this paper, we will describeerifier-policy attribute-based
identification schemes [2].
25.1 Scheme

An attribute-based identification schem®ID, consists of four
PPT algorithms: (Setup, KeyGen, P, V).
Setup(2, U) — (PK,MSK). Setup takes as input the security pa-
rameterd and an attribute univers#. It outputs a public key PK
and a master secret key MSK.
KeyGen(PK,MSK, S) — SKs. A key-generation algorithm Key-
Gen takes as input the public key PK, the master secret key MSK
and an attribute s& c U. It outputs a secret key SKcorrespond-
ingtoS.
P(PK,SKs) and V(PK, f). P and V are interactive algorithms
called aprover and averifier, respectively. P takes as input the
public key PK and the secret key g§KHere the secret key SKis
given to P by an authority that runs KeyGen(PK,MSK, V takes
as input the public key PK and an access formiul& is provided
V’s access formuld by the first round. P and V interact with each
other for some, at most constant rounds. Then, V finally returns its
decision 1 or 0. 1 means thata¢cepts in the sense P has a secret
key SKs such thatf(S) = 1. 0 means that VejectsP. We demand
correctness ofBID that for anyd and/, and if f(S) = 1, then
Pr[(PK, MSK) « Setup{, U); SKs < KeyGen(PKMSK, S);
b — (P(PK SKs), V(PK, f)) : b=1] = 1.
2.5.2 Concurrent Attack on ABID and Security

An adversaryA’s objective is impersonationA tries to make a
verifier V accept with an access formula. The following exper-
imentExprmt 52, (1, U) of an adversaryA defines the game of
concurrent attack on ABID.

ca

Exprmt 7 ypp (4, U)
(PK, MSK) « Setup(1, W)
(f*, s — ﬂm(PK,MSK;),Pj(PK,SK.)l?El(PK, )
b« (A(s), V(PK, f*))

If b = 1 then Return WIN else Return Lose

distribution as real accepting conversations. This protocol also can

be proved to be A-protocol, and is called th®@R-proofz-protocol
2.3.2 Fiat-Shamir Transform [1]

Employing a cryptographic hash function with collision resis-
tance,H, () : (1,0} — {1,0)'Y, aX-protocolZ can be transformed
into a digital signature scheme as follows. Given a messa@x-
ecute:a « XXX, w), ¢ « Hy(m | a), z « X3(x,w,a,c). Then
o = (a2 is a signature om. We denote the above signing algo-
rithm as F§9"(1; x, w, m) — (a,2) =: o~. The verification algorithm
is: F%rfy(x, mo) : ¢« Hyml a), b« ZYY(x a c,2), returnb.

The signature scheme £S= (R FS2",FS!"™) is known to be
extentially unforgeable against chosen-message atifieksl only
if underlyingZ-protocolX is secure againgtassive attackgl].
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In the experiment A issues key-extraction queries to the key-
generation oraclekG. Giving an attribute seS;, A queries
KG(PK,MSK, -) for the secret key SK. We do not require any
two input, S;; andS;,, to be distinct. On the other hand, the ad-
versaryA invokes provers RPK,SK), j = 1,....qp,....0p, by
giving an attribute se$; of A’s choice. Acting as a verifier with an
access formuld;, A interacts with each P

The access formuldé* declared byA is called atarget access
formula Here we consider an adaptive target access forrfiuia
the sense thafl’'s declaration off* is not limited before seeing the
public key PK. Two restrictions are imposed ghconcerningf*.
In key-extraction queries, each attribute Semust satisfyS; ¢ f*.
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In interactions with each provef(Sj) = 0. The number of key-

extraction queries and the number of invoked provers are atapost
anddq, in total, respectively, which are bounded by a polynomial in

A.
Theadvantageof A overABID in the game of concurrent attack
is defined as

AV 4prp(4) £ PrlExprmt &2, 51 (4, U) returnsWin].

ABID is calledsecure against concurrent attacisfor any PPTA

and for any attribute universd, Adv: .., (1) is negligible inA.
2.5.3 Anonymity

Consider the following experimexprmt 5,24, U). (In the

experiment, an adversa interacts withP(PK, SKs, ) as a verifier
with f*.)
Exprmt 5 iprn (4, U) :

(PK, MSK) « Setup(A, U), (So, S1. f*) — A(PK)

s.t. (F*(So) = F(S1) = 1) v ((f(So) = f7(S1) = 0)

SKs, « KeyGen(PK, MSK, Sp)

SKs, « KeyGen(PK, MSK, S;)

b « {0,1},b « APPKSKs)(PK, SKs,, SKs,)

If b = b Return Win else Return Lose

We say thahBID haveanonymityif, for any PPTA and for anyl{,
the following advantage of is negligible inA.
AdvEE) <

IPrExprmt 5250t U) returnswWin] — 1/2].

2.5.4 Attribute-Based
Knowledge

Identification Scheme of Proof of

Cur « XH(X,W): the process of selecting the first message
Cwmr according to the protocals on input X,W) € R;. Sim-
ilarly we denoteCha « X#(1), Res « Z3(X, W, Cur, Cua) and
b« 2¥’fy(x, Cwr, CHa, REs).

To be aZ-protocol, X+ must satisfy three constraints:
CompletenesAn honest proveP with a legitimate witness s&v
can make/ accept with probability 1.

Special Soundnesény PPT algorithm Pwithout any witness set,

a cheating prover, can only respond for one possible challénge

In other words, there is a PPT algorithm callekh@wledge extrac-
tor, 2‘;9, which, given a statemeix and usingP* as a subroutine,
can compute a witness 9@t satisfying &, W) € Ry with at most

a negligible error probability, from two accepting conversations of
the form Cwmr, CHa, Res) and Cwmr, CHa’, Res”) with CHa # CHaA'.
Honest-Verifier Zero-KnowledgeGiven a statement set and a
randomchallengeCua € CuaSp, we can produce (in polynomial-
time) an accepting conversatiobMr, Cua, Res), with the same dis-
tribution of real accepting conversations, without knowing the wit-
ness sew. In other words, there is a PPT algorithm callesim-
ulator, £$™, such that Cwr, Res) « E$M(X, Cua). Hohest-verifier
zero-knowledge implies zero-knowledge with respect to the honest
verifier.

A Z-protocol of f-proof can be proved to be a proof of knowl-
edge system.

4. Construction of aX-protocol of Boolean
Formula-Proof

In this section, from a giveB-protocolX and an access formula
f, we construct &-protocolXs of f-proof.

The outline of our protocat¢ is described in Fig. 1. Basically
Y ¢ is a 3-move protocol between interactive PPT algorhtms P and
V on initial input (X := {Xatt}, W := {wan}) € Rs for P andX for V.

Let f be an access formula. An attribute-based identification Satisfiability Evaluation. A prover begins with satisfiability eval-
scheme of proof of knowledge is an attribute-based identification uation concerning (S); we label each node of" with a valuev

scheme which satisfies the following knowledge soundness.
Knowledge SoundnesJhere is a PPT algorithm calledkaowl-

(True(1) or FaLse(0)) according to whether or n& € att(f) holds
at each leaf node and AND or OR holds at each inner node. This

edge extractgrwhich, given a public key PK and employing P as a computation is described as follows.

subroutine, can compute a secret keys3& someS c U satisfy-
ing f(S) = 1, with at most a negligible error probability.
3. Definition: X-protocol of Boolean
Formula-Proof
In this section, we define &-protocol of a boolean formula-
proof, which is a generalization of tieprotocol of OR-proof [8].

Let R be a binary polynomial-time relatioR = {(x,w)} C
{1,0}* x {1, 0}*. Then we create a new relatié:
Rr € (X = (Xarth, W = {ward) € (1,0} x {1,00";
(S := {att; Xaw, wan) € R}) = 1}. 1)

Then aX-protocol of f-proof on the relatiorR; is defined as a 3-

move protocol between interactive PPT algorhtms P and V on ini-

tial input (X := {Xau}, W := {way}) € Rf for P, andX for V. P sends

the first message called a commitm&ir, then V sends a ran-
dom bit string called a challendéua, and P answers with a third
message called a resporRes. Then V applies a local decision

test on ¥, Cwmr, CHa, Res) to return accept (1) or reject (0). Here

Cua is chosen at random fro@uaSe := {1, 0}'® with I(-) being a
super-log function.
This protocol is written by a PPT algorithii; as follows.

© 2013 Information Processing Society of Japan

2T, S) :
T = Lsub(r), Tr := Rsub(")
If rt(7) is an A -node,
thenReturn vpry = (227, S) A Z8%(TR, S))
elseif rt) is an v -node,
thenReturn vy = (E24(7¢, S) v Z2¥(TR, S))

else if rt{r) is a leaf node,
thenRetur vnery = (att(rt)) € S)

Commitment. Prover’s computation of a commitment value for
each leaf node is described in Fig. 2. Basically, the algorithris

a executed recursively.

Challenge Verifier picks up a challenge value as follows.

E?(/l) : CHA « Z2(1), Return(Cua)

Response Prover's computation of a response value for each leaf
node is described in Fig. 3. Basically, the algoritﬁﬁpis executed
recursively.

Verification. Verifier's computation is executed for each leaf node
as follows.
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P(X = {Xat}, W := {wan})
Initialize inner state
(T, S) = (vnd)ndeNa(ry)
If vy # 1, then abort
e|SeCHAn(rr,) =%

ZHX W T, (vndndend(r)
CHarr))
= ((Cwrit)ifeLt(77)»

(CHAR)ndetNd(T)» (Cvie ifeLtcr)

(Resif )iteLt(71)) —
CHA
CHarry) = CHa —
23X, W, T, (vndndend(r:)»
(CwmTif )feLi(T1)»
CHarry)> (CHANd)ndetNd(77)»
(Resif )iteLt(71))
— ((CHAnd)ndetNd(T7)»
(Resif )iteLt(71)) (CHAng)ndetNd ()
(RESf )ifeLf(7)
—

V(X):
Initialize inner state

Cha « X2(2)

(X, 7.
, (Cwif)iteLt(ry)»
CHa, (CHAnd)ndetNd(T7)»
(Resif )ifeLi(r7)) — b

Return b
Fig. 1 OurZ-protocolX¢ of boolean formula-proof on a relatid®y = {(X, W)}.

ZH(X W T, (0nd)ndend(r)» CHA)
Tt :=Lsub{), 7w := Rsub(")
If rt(7°) is anA-node, therCua, := CHa, CHAR := CHA
Return(Cray , CHaR, £} (X, W, T¢., (thd)ndend@r)» CHAL ), Z(X, W TR, (vnd)ndeNd(r) » CHAR))
else if rt(/") is anv-node, then
If vnery) = 1 A o) = 1, thenCray =, CHAR = *
else ifopyy = 1 A vperg) = 0, thenCray = #, CHAR < CHASP
else ifvn(ﬂ_) =0A Urt(7R) = 1, thenCua, « CHASp, CHAR = *
else ifoyryy) = 0 A vnery) = 0, thenCua,. < CHASP, CHag := CHa & CHA
Return(Crag , 23 (X, W, T¢., (vnd)ndend@ri )» CHAL ), CHAR, ZH(X, W, TR, (Und)ndend(7r)» CHAR))
else if rt(7") is a leaf-node, then
If CHa = *, thenCmr « Zl(Xa[t(n(q'))), RES = *
else ifCua # *, then Cmr, Res) « ESM(Xqq(rigry), CHa)
Return(Cwr, Res)

Fig. 2 The subroutin&} of ourZs.

VrfyRes(X, 7, (Cur, CHa, RES)ifeLf(7))
For If € Lf(7")
If £ (Xattqry, Cvir, CHar, Resir) = O,
thenReturn (0)
Return (1)

Z\flrfy (X, T, (Cmif )ifeLt(7).

CHa, (CHAnd)ndetNd@)» (RESIf )ifeLi(7)) :
If (VrfyCha (T, CHa, (CHAnd)ndetNd(T)) =1
A VrfyRes(X, 7, (Cwur, CHa, Res)jfeLi(7)) = 1),
thenReturn 1 elseReturn 0 Now we have to check th&; is certainly aX-protocol of f-
proof.

Proposition 1 (Completeness) Completeness holds for our
X¢. More precisely, Suppose thafs,) = 1. Then, for every node
in Nd(77), eitherv,g = 1 or Caang # * holds after executings.
Proof(sketch). Induction on the height @f;. The case of height
0 follows fromuyr,) = 1 and the completeness Bf Suppose that
the case of height holds and consider the case of heightl. The
construction 012} assures the case of heidght 1. O

Proposition 2 (Special Soundness) Special soundness
holds for ourX;.

Proof(sketch). We can construct a knowledge extraE‘fﬁrfrom a
knowledge extractarke of the underlyingz-protocolX as follows.

VrfyCha (7", Cua, (CHAnd)ndetNd(7))
T = Lsub(l), 7w := Rsub(")
Cuap = CHAnyry), CHAR 1= CHAryry)
If rit(77) is an A -node,
thenReturn (CHa 2 Cua; A CHa 2 CHAR
A VrfyCha (T, Crag, (CHAnd)ndetNd(7))
A VrfyCha (Tr, CaAg, (CHAng)ndetNd(7w))

else if rt{y") is an v -node, §
Z((Cmrys, CHarr, Resif )ifeLicr), (CMTir, CHAY, RES[ ifeL(77)) :

S*i=¢
For If € Lf(73%)
If Cuai # Cuag,thenS* := S* U {att(If)}
Wargy < Xe((Cwmryr, CHay, Resyr), (Cuys, Cuap, Resj;))
Return (W* := {wiates+» S*)

thenReturn (Cua 2 Cuan(r,) ® CHArrR)

A VrfyCha (T, CHay , (CHAng)ndetNd(7))
A VrfyCha (T, Cuag, (CHAng)ndetNd(7w))
elseif rt(7") is a leaf node,

thenReturn (CHa é CHASP)

Then Lemma 1 assures the proposition.
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Lemma 1 (Witness Set Extraction) The setW* output byZ‘;e KeyGen(PK,MSK, S) :
satisfies X, W*) € R;. . N 7 {0, 1}1
Proof(sketch). Induction on the number of alfnodes in iNdT).

. , For atte S
First remark thaCua # Cua’.

Suppose that all nodes in iNE{) are A-nodes. Then the above My o= (7 || att)

claim follows immediately becausena; # Cnaj; holds for all leaf Fs}szig”(ﬂ; PK, MSK, Myy)

nodes, and henc®* = Lf(77%). — (Ba, Wat) = Tat
Suppose that the case lof/-nodes holds and consider the case

of k + 1 v-nodes. Look at one of the lowest heightnode and SKs := (7, (Ta)ates)

name the height and the node lisand nd, respectively. Then Return SKs.

Cuane # Cual ;. because all nodes with height less thanare

A-nodes. So at least one of children of'nday nd, satisfies

Cnang # CHA;@. Divide the tree7; into two subtrees by cutting

the branch right above Agand the induction hypothesis assures the

claim. m]
Proposition 3 (Honest Verifier Zero-Knowledge)

Honest verifier zero-knowledge property holds for &ur

Proof(sketch). This is the immediate consequence of honest ver- Supplemen{PK, (aat)ates. att(f)) — (dat)ateat()

ifier zero-knowledge property €. That is, we can construct a

polynomial-time simulatoE‘.ﬁ:im which, on input (PKCHa), outputs

Note that the credential-bundle technique [12] is employed.
Then, to obtain a whole scheme of ABID of PoK, add the fol-

lowing two procedures (1) and (2) P(PK, SKg; f) andV(PK, f),

respectively.

(1) Just after settin@uane) := *, do the following so as to be able

to runZH(X, W, 7%, (tnd)ndend(r)» CHArr)):

StmtGen(PK, 7, (@at)atieatt()) = {Xatlatieatr) =2 X, W := {Watt)aties.

commitment and response messagg af m] In the first move, P sends to the verifier V additional elemermisd
Theorem 1 X is certainly ax-protocol of f-proof on the rela- (Qattatteatt(f)

tion Ry. (2) Just after runnin@ua « x2(1), do:

5. Our Attribute-Based Identification StmtGen(PK, 7, (Qar)atiat(r) — (Xatlateatr) =: X.

Scheme of Proof of Knowledge
9 Theorem 2 (Our ABID of PoK is a Z-protocol) Suppose

Employing the credential-bundle technique, we modifyinto that a given=-protocol £ possesses a polynomial-time algorithm
ABIDofPoK that has collusion resistance. The obtained scheme isgstmtoRes  Then ourABIDofPoK is a Z-protocol on the relation
an ABID of PoK scheme. Rt = {(X, W)}.

Proof(sketch). Completeness follows from the Completeness of
5.1 Scheme X¢. For special soundness, just convert the outpi8finto SKs.

The outline of our schem#BIDofPoK is described as follows.  For honest verifier zero-knowledge, convE?r'tm(PK, CHa) SO as to
We describe below two additional algorithms which are n&in generate additional elements (a randoand @at)aeatr))-
Supplement This is a generator of each supplementary element
aqq for att € att(f)\S, which is described as follows. 5.2 Security of Our ABID of PoK and its Proof

Theorem 3 (Security against Concurrent Attacks) If  the
Supplemen(PK = Xy, (qat)ates. att(f)) : employed signature scheme Ss existentially unforgeable
For atte att(f), If att ¢ S, then against chosen-plaintext attacks, then ABIDofPoK is secure
Catt «— CHASP, (Qatt, Zat) — Z5™(Xu, Cat)) against concurrent attacks.

Proof(sketch). Employing any given adversaflyas subroutine,

Return (aan) tteatt(f .
ateau(® we construct a signature forg‘é'r

StmtGen. This is a generator of each statemegtfor att € att(f), # can answer toA's key extraction queries for a secret key SK
which is described as follows. becauser can query his signing oracle about [ att; att € S),
wheref chooser at random# can simulate any concurrent prover
StmtGen(PK = Xw, 7, (8att) ateatt(f)) with SKs which A invokes becaus& can generate SKin the
For atte att(f) above way.

After the learning phase abovg,simulates a verifier with which
A begins to interact as a prover. TheferewindsA once andF

Xatt < ZMOR (3 @ar, Car) can obtain a witness sei\(, S*) by runningZ*®. Finally # con-
Return {Xattlatteatt(f) verts W+, S*) into SKsg.. O

My := (7 || att), Cat < Ha(Magt || @ar)

Then, our ABID of PoK scheme, ABIDofPoK =
(Setup KeyGen, P, V), is described as follows.

5.3 Anonymity
For the case of honest verifier, anonymity described in Section
2.5.3 follows from the honest verifier zero-knowledge property. As
Setup(4, U) : . e . .
for the case of dishonest verifier, it is not obvious that the anonymity
(Xw, wm) < Instance(4) holds.
PK := Xv, MSK := wy

Return(PK, MSK)

6. Application: Attribute-Based Signature
Scheme via the Fiat-Shamir Transform

In this section, we briefly describe an attribute-based signature
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scheme obtained by applying the Fiat-Shamir Transform [1].

The Fiat-Shamir Transform ([1], [9]), briefly described in Sec-
tion 2.3.2, can be directly applied to oABIDofPoK because our We first construct &-protocol of boolean formula-proof from a
ABIDofPOK is aX-protocol. given X-protocol. There, a knowledge extractor is provided to ex-

Discussions in [1] can be applied, so the security of the obtainedtract a witness set. Then, using the credential bundle technique,
attribute-based signature scheme is equivalent to the security of ouwe construct an attribute-based identification scheme of proof of
ABIDofPoK against passive attacks. knowledge,ABIDofPoK. Applying the Fiat-Shamir Transform to

Corollary 1 (Our Attribute-Based Signature Scheme) our ABIDofPoK results in an attribute based signature scheme.

Our attribute-based signature scheme obtained by applying the
Fiat-Shamir Transform to oWlBIDofPoK is secure based on the References
passive security ofBIDofPoK. [1] Abdalla, M., An, J. H., Bellare, M., Namprempre, C., “From Identification

According the Reset Lemma [5], the security of ®BIDof to Signatures via the Fiat-Shamir Transform: Minimizing Assumptions
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Cwumty; = g'®, Ca <« CHaSp,
REs, = Iy, + CHAlF Wat)»

)
RSt = Cmyp (Xareg) <™ -

Verification Equation y
7.2 RSA Setting
Suppose thal is an RSA modulus withN| = A, e is an RSA
exponent of odd prime angl= «®* mod N. Setup outputs the fol-
lowing master secret key and public key.

MSK = a, PK = (N, &, 3).

KeyGen outputs SK with signaturesr = (dat = ISy, War =
raga®"), whererg: € Z mod N is chosen at random andy :
7 || att Cagr — Ha(Mag || 8ar). ZSMORE i3 realized by computing:
Xatt 1= BayB™t.

The rest of protocol is executed accordingtoon input (X, W)
and with the following setting.

e C
Cmtt = 'y, > CHA < CHASP, RES, = I'Cyry (Wattqn) ™,

Verification Equation Res, ® 2 Cury (Xatt() <™.
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Z3(X W, T, (vnd)ndender)» (CMTit ifeL (7). CHA, (CHA)ndetnd(r)» (RESI ifeLt(7)) ©
T = Lsub{"), 7w := Rsub(")
If rt(77) is anA-node, therCua, := CHa, Cuagr := CHa
Return(Cuag , Z3(X, W, T¢., (vna)ndendrs )» (CMTi ifeLi(rr )» CiAe . (CHAng)ndetnders ) (RESififeL (7))
CHag, Z3(X, W TR, (tnd)ndeNd(r) » (CMTif ifeLi(7w)» CHAR, (CHAnd)ndetNa(r) » (RESIf ifeL (7))
else if rt(7) is anv-node, then

If vngr) = LA o) = 1, thenCuap < CuaSe, CHaR := CHa ® CHAp
else ifonr) = 1L A vrrg) = 0, thenCua,. = Cua @ CHAnry), CHAR := CHAnry)

else ifvnery) = 0 A vrr) = 1, thenCuay = Cuanry ), CHag = CHa & CHaryry)
else iforr,) = 0 A vrryy = 0, thenCray = CHarry ), CHag = CHarrs)

Return(Crag , 23 (X, W T, (vnd)ndendr )» (CMTi )ireLi(77)» CHA , (CHARd)ndetna(r ) (RESIf)ifeLi(71))

CHag, Z3(X, W TR, (tnd)ndeNd(rs) » (CMTit ifeLi(7)» CHAR, (CHARd)ndetNa(r) » (RESIH ifeL (7))
elseif rt(7) is a leaf-node, then

If RESrt(q-) = x, thenRes « 23(Xan(nc7')), Watt(rt(r)) » CMTn(rr), CHa)
else ifResyr) # *, thenRes « Resyr)
Return(Res)

Fig. 3 The subroutin&? of ourZs.
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