
情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 1

レイアウトツリーによるウェブページ

ビジュアルブロック表現方法の提案

曾駿†1 Brendan Flanagan
†1 廣川佐千男††2

ウェブページに対する情報抽出には類似する要素を抜き出すためにパターン認識が行われている。しかし、従来の手
法には HTMLファイルのソースコードを分析することにより要素を抽出する方法が多い。これらの手法は言語依存で
あるので、克服できない欠点がある。本論文ではレイアウトツリーという視覚的に類似する特徴を持つページブロッ

クを認識する方法と提案する。本稿でウェブページで各要素が表示される長方形領域をビジュアルブロックと言う。
これらのブロックに含まれる要素が表示される相対位置をレイアウトツリーとして表す。２つのブロックのレイアウ
トツリーの類似度によりこの２つのブロックの相似度を求める。

Proposal of Layout Tree of Web Page as Description of Visual Blocks

JUN ZENG
†1 BRENDAN FLANAGAN

†1 SACHIO HIROKAWA
††2

When extracting information from a web page, IE systems usually need to perform pattern recognition to identify the elements

that have similar patterns. However, most of them are mainly based on analyzing HMTL source code, DOM tree, tag tree or

Xpath of web pages. These methods are language-dependent, or more precisely, HTML-dependent. They have some insuperable

limitations. In order to overcome these limitations, we propose a notion of layout-tree and a pattern recognition method to

identify visual blocks with similar visual pattern using layout tree. In this paper, we call a visible rectangular region in a web

page a visual block or block for short. We consider if the elements of two blocks are displayed in a similar layout, we define that

the two blocks are visually similar. We first transform the layout into a layout tree. By calculating the similarity of the layout

trees of two blocks, we can determine whether the two blocks are visually similar or not.

1. Introduction

 The Web, as the largest database, often contains

information that may be interesting for researchers and the

general public. However, the quantity of information available

today is more than at any point in history, but with this wealth of

information comes even greater challenges. Unlike structured

database, Web pages are semi-structured data. Due to the lack of

structure of web information sources, access to this huge

collection of information has been limited to extracting and

searching automatically. The process that extracts information

from semi-structured data (such as web pages) and translates the

information into structured data is called Information Extraction

(IE) [1].

Programs that perform IE task are referred to as extractors or

wrappers. Wrappers are used to identify data of interest and map

them to some suitable format such as, XML or relational tables.

In order to identify the elements with similar pattern, a wrapper

usually performs pattern recognition which rely on a set of

extraction rules. These rules are mainly based on analyzing the

HMTL source code, Document Object Model (DOM) tree [2, 3],

tag tree [4, 5] or Xpath [6, 7] of web pages. These methods have

 †1 九州大学大学院 システム情報科学府

 Graduate School of ISEE, Kyushu University

 †2 九州大学 情報基盤研究開発センター

 Research Institute for Information Technology, Kyushu University

some insuperable limitations. They depend on web page

programming languages. With the reversion of these languages,

some new tags will be introduced and some tags may be

deprecated. For example, by comparison with HTML4, HTML5

adds many new syntactic features, such as <video>, <audio> and

<canvas> elements. Also, some elements, such as <a>, <cite>

and <menu> have been changed. Once the version of languages

changes, these methods are not able to adapt to the new version

of the language. Thus the life circle of these methods is very

short.

In order to overcome these limitations, vision-based methods

have been proposed [8, 9]. These methods rely on visual cues

from browser renderings. Most of the vision-based methods

focus on the location, size or font features of elements. However,

these approaches can only be applied to certain web page

templates. For example [9] clusters the data records through

analyzing the similarity of position, image size and font size of

the elements and consider that the main contents or data records

are always in the middle of web page. Even though such

assumptions are important for the success of the algorithm, it is

hard to see how the proposed approaches can be used for pages

with other semantic structures.

Besides the HTML structure and visual cues, there is another

important feature that is often ignored. That is relative position of

elements. Some may consider relative position as a visual

property. Strictly speaking, relative position is different from

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 2

other visual properties. The visual properties such as position,

size and font size only refers to just one single element, but

relative position refers to at least two elements. In other words,

the visual properties like position, size and font size are absolute

and a single tuple, but layout is relative and therefore a double

tuple. The relative positions of the elements can form the layout

of these elements. In this paper, we translate the layout feature

into a tree structure called layout tree and propose a pattern

recognition method to identify visual block (see Section 3 for

definition) with similar visual pattern using layout tree.

The rest of the paper is organized as follows: Related works

are reviewed in Section 2. Visual block and layout feature are

introduced in Section 3. Our solution for identify visually

similar block is described in Section 4. Finally, conclusion and

future work are given in Section 5.

2. Related Work

In the past few years, many approaches to information

extraction have been proposed. According to the pattern

recognition rules, we roughly divide these approaches into two

groups: HTML-based approaches and vision-based approaches.

2.1 HTML-based Approaches

 HTML source code is often transformed into three forms:

DOM tree, tag tree, xpath and tag path. These approaches

identify the similar patterns by calculating the similarity or

distance of DOM tree, tag tree, xpath or tag path of elements.

(1) DOM Tree

Analyzing the DOM tree is a basic and effective way to

identify the structure feature of HTML documents. D. Yuan et al.

[2] consider the nodes labeled "div" as topic content node,

which may contain the important information. They prune back

the noise nodes which are not topic node and extract the

information from the pruned DOM tree. C. Castillo et al. [3]

defined the length of the path between two nodes of a DOM tree

as DOM distance. This method is based on DOM distance and

can extract information from single webpages or collections of

interconnected webpages.

(2) Tag Tree

The tag tree can be regarded as a simplified DOM tree. It

focuses on the tag name of HTML elements and igores the other

attributes and properties. X. Ji et al. [4] parsed web pages into

tag trees, and then generated templates using a cost-based tree

similarity measurement. The exclusive content in each page is

then extracted by using the templates to parse the page. Finally,

the records in pages and the schema of the records can be

extracted from the exclusive content by finding repeating

patterns and using some heuristic rules. X. Xie et al. [5]

transfered a distinct group of tag paths appearing repeatedly in

the DOM tree of the Web document to a sequence of integers,

from which a suffix tree is built by using this sequence. Then

they captured the useful data region patterns which can be used

to extract data records.

(3) Tag Tree

Similar to the tag tree, the Xpath or tag path makes use of the

tag name of HTML elements to analyze the structure of HTML

documents. G. Miao et al. [6] focuses on how a distinct tag path

appears repeatedly in the DOM tree of a Web document. Instead

of comparing a pair of individual segments, a pair of tag path

occurrence patterns were compared to estimate how likely these

two tag paths represent the same list of objects. T. Grigalis et al.

[7] mainly segment a web page using xpath. This method

clusters visually and structurally similar repeating web page

elements to identify the underlying data records.

All of these approaches are language-dependent, or more

precisely, HTML-dependent. Once the version of languages

changes, these methods are not able to adapt to the new version

of the language. Moreover, an HTML document is just one part

of a web page. Web pages also need the support of some script

languages, such as: Javascript and Cascading Style Sheets (CSS).

Although, these script languages have little semantic function,

they play an irreplaceable role and contain a lot of valuable

information. In other words, an HTML file cannot be equated

with a web page. Simply analyzing the web page programming

language may lead to incorrect results.

2.2 Vision-based Approaches

 Vision-based approaches rely on visual cues from browser

renderings. Most of the vision-based methods focus on the

location, size or font features of elements. These approaches can

make good use of the visual information that is defined by

Javascript or CSS.

J. Kang et al. [8] proposed an informative block extraction

approach. This approach relies on visual clue for vision-based

page block segmentation to analyze and partition a web page into

a set of visual blocks, and then groups related blocks with similar

content structures into block clusters by using a tree edit distance

method. Then it recognizes the informative block cluster by

using tree alignment and tree matching. W. Liu et al. [9]

proposed a vision-based IE method that primarily utilizes the

visual features on the deep Web pages to implement deep Web

data extraction, including data record extraction and data item

extraction.

However, these approaches can only be applied to certain web

page templates and often need to make some assumptions. As

these assumptions are integral to the success of the algorithm, it

is hard to see how the proposed approaches could be used for

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 3

pages with other semantic structures.

3. Visual Similar Blocks

3.1 Definition of Visual Block

図 1 ビジュアルブロックの構造

Figure 1 The structure of visual blocks.

A web page is made up of finite blocks. We also call these

blocks visual block or block for short. We consider a visual

block as a visible rectangular region on a web page, as shown in

Figure 1. The definition of a visual block is as follows:

Definition III-1: Visual block VB = (E, R), where E is an

Element object that is defined by the HTML DOM based on

W3C standard, and R represents the visible rectangular region

where VB is displayed in web page.

According to W3C standard, the Element object of the DOM

represents an element in the HTML document. The details of

Element object can be found in official website of W3C [10].

The Element object not only contains the attributes of an HTML

element, such as “tagName”, “id”, “value” etc., but also contains

the properties defined by the DOM, such as “childNodes”,

“nextSibling”, etc.

Definition III-2: For two given visual blocks VB1= (E1, R1)

and VB2 = (E2, R2), if E1 is a descendant node of E2, then VB2

includes VB1, denoted VB1 ⊂ VB2.

Definition III-3: If a visual block VB= (E, R) does not

include any other visual blocks, then VB is a leaf visual block,

denoted VB : leaf.

3.2 Visually Similar Blocks

Definition III-4: For two given visual blocks VB1 and VB2, if

the leaf visual blocks of VB1 and VB2 are displayed in a similar

layout, we define that VB1 and VB2 are visually similar.

It should be noted that only the layout of leaf blocks are

considered. This is because the leaf blocks contain contents such

as text, images etc. The other intermediate visual blocks do not

contain content, so they are ignored. Figure 2 shows two records

of tablet computers. Although the contents of two records are

not all the same, the main layout is similar. In both two records,

a picture is on the top of records; the product names are under

the pictures; the prices are under the product names; evaluations

are on the bottom of records. The (a) record contains some

additional contents, but the layout of “picture”, “name”, “price”

and “evaluation” is the same in both (a) and (b). According to

Definition III-4, (a) and (b) are visually similar blocks.

(a) (b)

図 2 （a）と（b）は視覚的に類似するブロックである

Figure 2 (a) and (b) are two visually similar blocks.

4. Layout Tree of Visual Block

4.1 The Layout of Visual Blocks

In this section, a description of layout is given and the creation

of layout tree is introduced. For a visual block B, where B is not

a leaf block, the layout of B is represented as a two-tuples

Layout(B) = (LB, S). LB = {bi |bi : leaf and b ⊂ B, i ∊ [1, n]} is

a finite sequence of leaf blocks that are included by B. All these

blocks are not overlapping. The order of the leaf blocks are

determined by depth-first traversal of the DOM tree. S = {s1, s2,

… , sn-1} is a finite sequence of separators, including horizontal

separators and vertical separators. The direction of a separator is

a simple and effective way to describe the relative position. If the

separator is horizontal, it means the relative position of the two

parts that are on the two sides of the separator is up-down. If the

separator is vertical, it means the relative position is left-right. It

should be noted that a separator never crosses any blocks.

Figure 3 shows an example of the layout of a visual block. In

Figure 3, the solid line rectangles represent the leaf blocks and

dotted lines represent the separators. All the intermediate blocks

are ignored, because if they are considered the visual blocks may

overlap each other, which will make it difficult to determine the

separators. Therefore only the leaf blocks are considered to

describe the layout of a visual block.

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 4

図 3 ビジュアルブロックのレイアウト

Figure 3 An example of the layout of a visual block.

4.2 The Layout Tree of Visual Block

The separators can be considered as nodes of a tree, and the

two smaller parts can be considered as the left sub-tree and the

right sub-tree. Generally, if the separator is horizontal, the upper

part is left sub-tree and lower part is the right sub-tree. If the

separator is vertical, the left part is left sub-tree and right part is

right-tree. Therefore, the layout of a visual block can be regarded

as a tree. We call the tree a “layout tree”. In this section, we

introduce how to determine each separator and generate a layout

tree.

We take the visual block in Figure 3 for example to explain

the process of generating a layout tree as shown in Figure 4. Let

us suppose that the ordered set of the leaf blocks {b1, b2, b3, b4}

have been figured out. First, {b2, b3, b4} are considered as a

whole. There is a separator S1 between b1 and {b2, b3, b4}. In

Figure 4 (a) the first separator S1 splits the block into two parts P1

and P2. Then the S1 is considered as the root, the upper part P1 is

the left sub-tree and the lower part P2 is the right sub-tree. After

that, the two sub-trees are checked to see if contain a separator.

In Figure 4 (b), P1 contains only the leaf block b1 and does not

contain any separators. There is no need to separated P1 anymore,

so P1 is replaced by b1. The right sub-tree P2 contains three leaf

blocks {b2, b3, b4}, so it needs to be separate further. Similarly,

{b3, b4} could be considered as a whole, however, there are not

any separators between b2 and {b3, b4}. Therefore {b2, b3} is

considered as a whole as there is a separator S2 between {b2, b3}

and b4. S2 separates P2 into two smaller parts. The upper part P2_1

is the left sub-tree and the lower part P2_2 is the right sub-tree. In

Figure 4(c), b4 replaces the P2_2 that is because b4 is the only one

leaf block that is contained in P2_2. P2_1 is separated by S3 into

P2_1_1 and P2_1_2. Finally, P2_1_1 is replaced by b2 and P2_1_2 is

replaced by b3 as both P2_1_1 and P2_1_2 contain only leaf block.

Figure 4(d) shows the final layout tree of the visual block.

4.3 Weight of Layout Tree

The contribution of different leaf blocks to the layout

is different. For example in Figure 3, b1 is more important

than any other leaf blocks. If b1 disappeared then the

layout would change a lot. Conversely, if b2 or b3

disappeared the change of the layout is much less. Here,

we call this contribution or importance “weight”. For a

leaf block bi the Weight(bi) is calculated as in formula (1) :

)Area(

)Area(
)Weight(

B

b
b i

i (1)

Here B is the visual block where bi is in, Area(bi) and

Area(B) represent the area of bi and B. In other words, in

the same visual block, the leaf block with greater area has

greater weight.

Similar to the leaf blocks, each separator has weight. It

is not hard to notice that each separator can separate the

current rectangular region and leaf blocks into two smaller

parts. Therefore the weight Weight(Si) of a separator Si is

calculated as formula (2):

)Area(

)}Area(),{Area(
)Weight(21

B

PPMin
Si (2)

(a)

(b)

(c)

(d)

図 4 レイアウトツリーの生成

Figure 4 The process for layout tree generation.

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 5

Here B is the visual block containing Si, P1 and P2 are the two

smaller parts that are separated by Si. Area() represents the area.

Let us go back to the example of Figure 3, it is obvious that the

order of the weight of the three separators is Weight(S1) >

Weight(S2) > Weight(S3). Particularly, if Area(P1) + Area(P2) =

Area(B) and Area(P1) = Area(P2), the Weight(Si) will be the

maximum value 1/2.

4.4 Similarity of Layout Trees

According to Definition III-4, if two blocks has a

similar layout feature, they are visually similar blocks. The

similarity of layout trees can be regarded as the similarity

of blocks. There are many algorithms to calculate the

structural similarity between trees, in which the Tree Edit

Distance (TED) is a simple and efficient algorithm [11].

We apply the TED algorithm to measure the similarity

between layout trees. The edit distance, ED(T1, T2),

between two trees T1 and T2 is defined as the minimum

cost to transform T1 to T2 by using insertion, deletion, and

replacement operations on nodes. See paper [11] for the

detail of TED algorithm.

Basing on the TED algorithm and the features of

layout tree, we introduce the cost functions to calculate the

cost of operations. Formula (3) and formula (4) show the

cost functions of insertion and deletion operations:

)Weight()Insert(nn (3)

)Weight()Delete(nn (4)

Here n is a node of a layout tree, and Weight(n) is the weight

of n. That is to say if insert n into a tree or delete n from a tree

the cost will be the weight of n. The greater the weight is the

greater the cost will be. Similarly, the cost function of a

replacement operation is calculated as in formula (5)

)(

)(

)Weight()Weight(

0
),Re(

21

21

21

21
ndiffn

nsimn

nn
nn (5)

Here n1 sim n2 represents n1 and n2 are similar, and n1

diff n2 represents n1 and n2 are not similar. As introduced

in previous section, there are two types of nodes in a

layout tree: separator nodes and leaf block nodes.

Moreover, there are two directions in separator nodes:

horizontal and vertical. As for leaf block nodes, we

roughly divide them into two types: image nodes and text

nodes. The following rules are used to determine whether

n1 and n2 are similar or not:

Rule 1: If node n1 and node n2 are different types (one is a

separator node and the other is a leaf block node), then n1

diff n2.

Rule 2: If both node n1 and n2 are separator nodes, and the

directions of n1 and n2 are different (one is horizontal and

the other one is vertical) then n1 diff n2. Otherwise, n1 sim

n2.

Rule 3: If both node n1 and n2 are leaf block nodes, and

the types of n1 and n2 are different (one is image node and

the other one is text node) then n1 diff n2.

Rule 4: If both node n1 and n2 are image nodes, then n1

diff n2.

Rule 5: If both node n1 and n2 are text nodes, and n1 and

n2 have the same font and font size, then n1 sim n2.

Otherwise n1 diff n2.

After the edit distance of two layout trees are

determined, the similarity of them can be calculate. Let T1

and T2 be two layout trees. ED(T1, T2) is the edit distance

of T1 and T2. The similarity of T1 and T2 can be calculated

as in formula (6):

)}Weight(),Weight({

),ED(
),Sim(21

21

ii mnMax

TT
TT (6)

Here ni is a node in T1 and mi is a node in T2. The

denominator of formula (6) represents the greater weight

of the layout tree T1 and T2. The similarity of T1 and T2

has the following features:

(1)]1,0[),Sim(21 TT

(2) If Sim(T1, T2) is closer to 0, then T1 and T2 are have a

greater similarity; if Sim(T1, T2) is closer to 1, then T1 and

T2 are have greater different. We introduce a threshold α.

If Sim(T1, T2) ≤ α, then T1 and T2 are similar, otherwise

they are different.

5. Conclusion and Future Work

When extracting information from web pages, IE systems

usually need to perform pattern discovery to identify the

elements that have similar patterns. However, most of the pattern

recognition methods are mainly based on analyzing HMTL

source code, such as: DOM tree, tag tree or Xpath of web pages.

These methods are language-dependent, or more precisely,

HTML-dependent. They have some insuperable limitations. In

order to overcome these limitations, we proposed a pattern

recognition method to identify visual blocks with similar visual

patterns using layout tree. In this paper, we call a visible

rectangular region on a web page a visual block or block for

short. We consider if the elements of two blocks are displayed in

a similar layout, we define that the two blocks are visually

similar. We used the separators to transform the layout of a block

into a tree structure called layout tree. By calculating the

情報処理学会研究報告

IPSJ SIG Technical Report

ⓒ2012 Information Processing Society of Japan 6

similarity of the layout trees of two blocks, we can determine

whether the two blocks are visually similar or not.

The layout-tree-based pattern recognition method can be

applied to many fields, such as: information extraction, pattern

reorganization and data mining. In the future, we plan to

develop an IE system to extract data records from web pages

using the layout tree method.

REFERENCES

1) C. Chang, M. Kayed, M. Girgis, and K. Shaalan, "A Survey of Web

Information Extraction Systems", IEEE Transactions on Knowledge and

Data Engineering, Vol. 18, Issue 10, pp. 1411-1428 (2006)

2) D. Yuan, Z. Mo, B. Xie, and Y. Xie, "The Technology of Extracting

Content Information from Web Page Based on DOM Tree",

Communications in Computer and Information Science Volume 144, pp.

271-278 (2011)

3) C. Castillo, H. Valero, J. Ramos, and J. Silva, "Information

extraction from webpages based on DOM distances", Lecture Notes in

Computer Science Volume 7182, pp. 181-193 (2012)

4) X. Ji, J. Zeng, S. Zhang, and C. Wu, "Tag tree template for Web

information and schema extraction", Expert Systems with Applications

Volume 37, Issue 12, pp. 8492–8498 (2010)

5) X. Xie, Y. Fang, Z. Zhang and L. Li, "Extracting data records from

web using suffix tree", Proc. ACM SIGKDD Workshop on Mining Data

Semantics (MDS '12), Article No. 12 (2012)

6) G. Miao, J. Tatemura, W. Hsiung, A. Sawires, and L. E. Moser,

"Extracting data records from the web using tag path clustering", Proc.

the 18th international conference on World wide web(WWW 09),

pp.981-990 (2009)

7) T. Grigalis and A. Čenys, "Generating Xpath Expressions for

Structured Web Data Record Segmentation", Communications in

Computer and Information Science Volume 319, pp. 38-47 (2012)

8) J. Kang and J. Choi, "Recognising informative web page blocks

using visual segmentation for efficient information extraction", Journal

of Universal Computer Science, Vol. 14, No. 11, pp. 1893-1910 (2008)

9) W. Liu, X. Meng, and W. Meng, "Vide: A vision-based approach

for deep web data extraction", IEEE Transactions on Knowledge and

Data Engineering, Vol. 22, Issue 3, pp. 447-460 (2010)

10) http://www.w3.org/

11) K. Zhang and D. Shasha, "Simple Fast Algorithms for the

Editing Distance between Trees and Related Problems", SIAM J.

COMPUT, Vol. 18, No, 6, pp. 1245-1262 (1989)

